Performance comparison of simplification
algorithms for polygons in the context of
web applications

®
Universitat
w k Augsburg
University

Masterarbeit
Institut fur Informatik

Universitat Augsburg

vorgelegt von

Alfred Melch

Matrikelnummer xxx

Augsburg, August 2019

1. Gutachter: Prof. Dr. Jorg Héahner
2. Gutachter: Prof. Dr. Sabine Timpf
Betreuer: Prof. Dr. Jorg Hahner

Abstract

Abstract goes here

CONTENTS CONTENTS
Contents

1__Introductionl 1

(1.1 Binary instruction sets on the web plattorm| 1

(1.2 Performance as important factor for web applications| 1

(1.3 Topology simplification for rendering pertormance{ 2

(.4 Related workl 2

[L5 Structure of this thesid oo 2

2 eory. 4

[2.1 Generalization in cartographyl 4

[2.1.1 Goals of reducing datal 4

[2.1.2 Automated generalization| 4

2.2 Geodata formats on the Webl. 4

[2.3 Polyline simplification| 0. 7

2.3.1 Heuristicsl o 7

[2.3.2 Algorithms| o 7

[2.3.3 Summary| 12

2.4 Web runtimeslo 12

[2.4.1 Introduction to Webassembly| 12

[3 Methodology| 14

[3.1 Implementation of a performance benchmark{. 14

[3.1.1 State of the art: Simplity.ys| 14

[3.1.2 'The webassembly solution| 16

[3.1.3 The implementation of a web framework| 20

3.1.4 External libraries 20

3.1.5 The frameworkl 20

[3.1.6 The user interfacd oo 22

B.1.7 Thetestdatal 25

[3.2 Algorithm comparison| L. 25

[3.2.1 State of the art: psimpll 25

[3.2.2 Compiling to WebAssembly| 25

[3.2.3 The implementation| 27

3.2.4 The user interfacel oL 28

4_Results| 31

4.1 Benchmark resultsl 0. 31

[4.1.1 Device 1 - Windows - wasm vs js| 31

CONTENTS CONTENTS

[4.1.2 Device 1 - Windows - wasm stack analysis| 35

[4.1.3 Device 2 - MacBook Pro - wasm vsjs/ 36

[4.1.4 Device 3 - Ubuntu - turt.js analysis| 38

[4.1.5 Device 4 - iPhone - mobile testing| 40

[4.2 Comparing the results of ditterent algorithms|. 40
6__Discussion| 41
6 Conclusion 42
6.1 FEnhancementsl. 42

1 INTRODUCTION

1 Introduction

Simplification of polygonal data structures is the task of reducing data points while
preserving topological characteristics. The simplification often takes the form of
removing points that make up the geometry. There are several solutions that tackle
the problem in different ways. This thesis aims to compare and classify these so-
lutions by various heuristics. Performance and compression rate are quantitative
heuristic used. Positional, length and area errors will also be measured to quan-
tify simplification errors. With the rising trend of moving desktop applications to
the web platform also geographic information systems (GIS) have experienced the
shift towards web browsers E] Performance is critical in these applications. Since
simplification is an important factor to performance the solutions will be tested by

constructing a web application using a technology called WebAssembly.

1.1 Binary instruction sets on the web platform

The recent development of WebAssembly allows code written in various program-
ming languages to be run natively in web browsers. So far JavaScript was the only
native programming language on the web. The goals of WebAssembly are to define
a binary instruction format as a compilation target to execute code at native speed
and taking advantage of common hardware capabilities E] The integration into the
web platform brings portability to a wide range of platforms like mobile and internet
of things (IoT). The usage of this technology promises performance gains that will
be tested by this thesis. The results can give conclusions to whether WebAssem-
bly is worth a consideration for web applications with geographic computational
aspects. Web GIS is an example technology that would benefit greatly of such an
advancement. Thus far WebAssembly has been shipped to the stable version of
the four most used browser engines ﬂ The mainly targeted high-level languages for
compilation are C and C++. Also a compiler for Rust and a TypeScript subset has
been developed. It will be explored how existing implementations could easily be

adopted when using a compiler.

1.2 Performance as important factor for web applications

There has been a rapid growth of complex applications running in web-browsers.
These so called progressive web apps (PWA) combine the fast reachability of web

pages with the feature richness of locally installed applications. Even though these

"https://www.esri.com/about/newsroom/arcnews/implementing-web-gis/
’https://webassembly.org/
3https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html]

1.3 Topology simplification for rendering performance 1 INTRODUCTION

applications can grow quire complex, the requirement for fast page loads and instant
user interaction still remains. One way to cope this need is the use of compression
algorithms to reduce the amount of data transmitted and processed. In a way
simplification is a form of data compression. Web servers use lossless compression
algorithms like gzip to deflate data before transmission. Browsers that implement
these algorithms can then fully restore the requested ressources resulting in lower
bandwidth usage. The algorithms presented here however remove information from
the data in a way that cannot be restored. This is called lossy compression. The

most common usage on the web is the compression of image data.

1.3 Topology simplification for rendering performance

While compression is often used to minimize bandwidth usage the compression of
geospatial data can particulary influence rendering performance. The bottleneck
for rendering often is the svg transformation used to display topology on the web.
Implementing simplification algorithms for use on the web platform can lead to

smoother user experience when working with large geodata sets.

1.4 Related work
(Related Work j

1.5 Structure of this thesis

This thesis is structured into a theoretical and a practical component. First the the-
oretical principles will be reviewed. Topology of polygonal data will be explained
as how to describe geodata on the web. A number of algorithms will be introduced
in this section. Each algorithm will be dissected by complexity, characteristics and
the possible influence to the heuristics mentioned above. An introduction to We-
bAssembly will be given here.

In the next chapter the practical implementation will be presented. This section
is divided in two parts since two web applications are produced in this thesis. The
first one is a benchmark comparison of an algorithm implemented in JavaScript and
in WebAssembly. It will be used investigate if performance of established imple-
mentations can be improved by a new technology. The second part is about several
algorithms brought to the web by compiling an existing C++ library. This applica-
tion can be used for qualitative analysis of the algorithms. It will show live results

to see the characteristics and influence of single parameters.

1.5 Structure of this thesis 1 INTRODUCTION

The results of the above methods will be shown in chapter 4. After discussion

of the results a concluion will finish the thesis.

2 THEORY

2 Theory

In this chapter the theory behind polygon simplification will be explained. The
simplification process is part of generalization in cartography. So first a few words
about it will be dropped do give a broad overview about the topic. It will be
clarified which goals drive the reducing of data quantity, especially in the context of
web applications. Then the data formats will be explained that make up the data.

From there a closer look can be taken how the simplification can be accomplished.

2.1 Generalization in cartography
2.1.1 Goals of reducing data

2.1.2 Automated generalization

2.2 Geodata formats on the Web

Here the data formats that are used through this theses will be explained.

The JavaScript Object Notation (JSON) Data Interchange Format was
derived from the ECMAScript Programming Language Standard] It is a text format
for the serialization of structured data. As a text format is suites well for the data
exchange between server and client. Also it can easily be consumed by JavaScript.
These characteristics are ideal for web based applications. It does however only sup-
port a limited number of data types. Four primitive ones (string, number, boolean
and null) and two structured ones (objects and array). Objects are an unordered
collection of name-value pairs, while arrays are simply ordered lists of values. JSON
was meant as a replacement for XML as it provides a more human readable format.

Through nesting complex data structures can be created.

The GeoJSON Format is a geospatial data interchange formatf] As the name
suggests it is based on JSON and deals with data representing geographic features.
There are several geometry types defined to be compatible with the types in the
OpenGIS Simple Features Implementation Specification for SQIﬂ These are Point,
MultiPoint, LineString, MultiLineString, Polygon, Multipolygon and the heteroge-
neous GeometryCollection. Listing (1| shows a simple example of a GeoJSON ob-
ject with one point feature. A more complete example can be viewed in the file

./data/example-7946.geojson.

‘https://tools.ietf.org/html/rfc8259
Shttps://tools.ietf.org/html/rfc7946
Shttps://portal.opengeospatial.org/files/?artifact_id=829

—_

O © 00O Uk Wi -

2.2 Geodata formats on the Web 2 THEORY

"type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]

1,

"properties": {
"name": "Dinagat Islands"

}

X

Listing 1: An example for a GeoJSON object

The feature types differ in the format of their coordinates property. A position
is an array of at least two elements representing longitude and latitude. An optional
third element can be added to specify altitude. All cases in this thesis will only deal
with two-dimensional positions. While the coordinates member of a Point-feature
is simply a single position, a LineString-feature describes its geometry through an
Array of at least two positions. More interesting is the specification for Polygons.
It introduces the concept of the linear ring as a closed LineString with at least four
positions where the first and last positions are equivalent. The Polygon’s coordinates
member is an array of linear rings with the first one representing the exterior ring
and all others interior rings, also named surface and holes respectively. At last the
coordinates member of MultiLineStrings and MultiPolygons is defined as a single
array of its singular feature type.

GeoJSON is mainly used for web-based mapping. Since it is based on JSON
it inherits its strength. There is for one the enhanced readability through reduced
markup overhead compared to XML-based data types like GML. Interoperability
with web applications comes for free since the parsing of JSON-objects is integrated
in JavaScript. Unlike the Esri Shapefile format a single file is sufficient to store and
transmit all relevant data, including feature properties.

To its downsides count that a text based cannot store the geometries as efficiently
as it would be possible with a binary format. Also only vector-based data types can
be represented. Another disadvantage can be the strictly non-topologic approach.
Every feature is completely described by one entry. However when there are features
that share common components, like boundaries in neighboring polygons, these data
points will be encoded twice in the GeoJSON object. On the one hand this further
poses concerns about data size. On the other hand it is more difficult to execute
topological analysis on the data set. Luckily there is a related data structure to

tackle this problem.

2.2 Geodata formats on the Web 2 THEORY

TopoJSON is an extension of GeoJSON and aims to encode datastructures into

a shared topologyﬂ. It supports the same geometry types as GeoJSON. It differs
in some additional properties to use and new object types like ”Topology” and
”GeometryCollection”. Its main feature is that LineStrings, Polygons and their
multiplicary equivalents must define line segments in a common property called
"arcs”. The geometries themselves then reference the arcs from with they are made .

up. This reduces redundancy of data points. Another feature is the quantization of

positions. To use it one can define a ”transform” object which specifies a scale and
translate point to encode all coordinates. Together with delta-encoding of position
arrays one obtains integer values better suited for efficient serialization and reduced

file size.

Coordinate representation Both GeoJSON and TopoJSON represent positions
as an array of numbers. The elements depict longitude, latitude and optionally
altitude in that order. For simplicity this thesis will deal with two-dimensional
positions only. A polyline is described by creating an array of these positions as

seen in listing

([t102.0, 0.0], [t103.0, 1.0], [104.0, 0.0], [105.0, 1.0]1]

Listing 2: Polyline coordinates in nested-array form

There will be however one library in this thesis which expects coordinates in a
different format. Listing |3| shows a polyline in the sense of this library. Here one

location is represented by an object with x and y properties.

[{x: 102.0, y: 0.0}, {x: 103.0, y: 1.0}, {x: 104.0, y: 0.0}, {x:
105.0, y: 1.0}]

Listing 3: Polyline in array-of-objects form

To distinguish these formats in future references the first first format will be

called nested-array format, while the latter will be called array-of-objects format.

"https://github.com/topojson/topojson-specification

2.3 Polyline simplification 2 THEORY

Grouping points ﬂ

First set of consecutive points

Second set of consecutive points

The n'™ point routine The routine of random-selection
of points

Randomly select one point in

Retain the n™ point in’each
each point set to be retained

point set
Retain the starting point of Retain the starting and end
the original line points of the original line
ﬂ The end result of the routine ﬂ
P,
e P,
T — R T

i The simplified line A . T . PRI .

* *" One version of the simplified line

Figure 1: Nth point algorithm

2.3 Polyline simplification
2.3.1 Heuristics

Positional errors
Length errors
Area Errors

2.3.2 Algorithms

Compression algorithms.
n-th point algorithm

Random-point routine

2.3 Polyline simplification

2 THEORY

tolerance

key

Figure 2: Radial distance algorithm

Radial distance algorithm

Perpendicular distance algorithm

Reumann-Witkam simplification

Opheim simplification

Lang simplification

Douglas-Peucker simplification

with reduction parameter

Jenks simplification

Visvalingam-Whyatt simplification

Zhao-Saalfeld simplification

2.3 Polyline simplification 2 THEORY

key

segment distance

Figure 3: Perpendicular distance algorithm

tolerance

Figure 4: Reuman-Witkam algorithm

2.3 Polyline simplification

2 THEORY

rmaximum tolerance

o

———— minimum tolerance

Figure 5: Opheim algorithm

\

search region

Figure 6: Lang algorithm

10

2.3 Polyline simplification

2 THEORY

max edge distance

Simplification

key

Figure 7: Douglas Peucker algorithm

11

2.4 Web runtimes 2 THEORY

2.3.3 Summary

2.4 Running the algorithms on the web platform

JavaScript has been the only native programming language of web browsers for a
long time. With the development of WebAssembly there seems to be an alternative
on its way with high promises. This technology and the benefits and drawbacks to
it will be explained in this chapter. It will be used to execute the algorithms under

inspection in this thesis.

2.4.1 Introduction to Webassembly

WebAssembly is designed by engineers from the four major browser vendors (Mozilla,
Google, Apple, Microsoft). It is a portable low-level bytecode designed as target for
compilationof high-level languages. By being an abstraction over modern hardware
it is language-, hardware-, and platform-independent. It is intended to be run in
a stack-based virtual machine. This way it is not restrained to the Web platform
or a JavaScript environment. Some key concepts are the structuring into modules
with exported and imported definitions and the linear memory model. Memory is
represented as a large array of bytes that can be dynamically grown. Security is
ensured by the linear memory being disjoint from code space, the execution stack
and the engine’s data structures. Another feature of WebAssembly is the possibility

of streaming compilation and the parallelization of compilation processes. ﬁ

Benefits of WebAssembly The goals of WebAssembly have been well defined.
It’s semantics are intended to be safe and fast to execute and bring portability by
language-, hardware- and platform-independence. Furthermore it should be deter-
ministic and have simple interoperability with the web platform. For its representa-
tion the following goals are declared. It shall be compact and easy to decode, validate
and compile. Parallelization and streamable compilation are also mentioned.
These goals are not specific to WebAssembly. They can be seen as properties
that a low-level compilation target for the web should have. In fact there have
been previous attempts to run low-level code on the web. Examples are Microsoft’s
ActiveX, Native Client (NaCl) and Emscripten each having issues complying with
the goals. Java and Flash are examples for managed runtime plugins. Their usage
is declining however not at least due to falling short on the goals mentioned above.

It is often stated that WebAssembly can bring performance benefits. It makes

8https://people.mpi-sws.org/~rossberg/papers/Haas, \%20Rossberg, \%20Schuff,
\%20Titzer, \%20Gohman, \%20Wagner, \%20Zakai, \%20Bastien, \%20Ho1lman\’%20-\
%#20Bringing\%20the\%20Web\%20up\%20to\%20Speed\%20with\%20WebAssembly . pdf

12

2.4 Web runtimes 2 THEORY

sense that statically typed machine code beats scripting languages performance wise.
It has to be observed however if the overhead of switching contexts will neglect this
performance gain. JavaScript has made a lot of performance improvements over
the past years. Not at least Googles development on the V8 engine has brought
JavaScript to an acceptable speed for extensive calculations. The engine observes
the execution of running javaScript code and will perform optimizations that can
be compared to optimizations of compilers.

The JavaScript ecosystem has rapidly evolved the past years. Thanks to pack-
age managers like bower, npm and yarn it is simple to pull code from external
sources into ones codebase. Initially thought for server sided JavaScript execution
the ecosystem has found its way into front-end development via module bundlers
like browserify, webpack and rollup. In course of this growth many algorithms and
implementations have been ported to JavaScript for use on the web. With We-
bAssembly this ecosystem can be broadened even further. By lifting the language
barrier existing work of many more programmers can be reused on the web. Whole
libraries exclusive for native development could be imported by a few simple tweaks.
Codecs not supported by browsers can be made available for use in any browser sup-
porting WebAssembly. One example could be the promising AV1 video codec. In
this these the C++ library psimpl will be utilized to bring polyline simplification to
the web. This library already implements various algorithms for this task. It will
be further introduced in chapter |3.2.1]

Existing compilers

Technical hurdles

13

3 METHODOLOGY

3 Methodology

The benefits that WebAssembly promises shall be tested in two seperate web pages.
One for the performance measurements and one to test the integration of existing

libraries.

Performance As it is the most applicated algorithm the Douglas-Peucker algo-
rithm will be used for measuring performance. A JavaScript implementation is
quickly found. SimplifyJS. It is used by Turf, a geospatial analysis library. To
produce comparable results the implementation will be based on this package. A
separate library, called SimplifyWASM, written in C will be created that mimics the

JavaScript original.

Integrating an existing C++ library An existing implementation of several
simplification algorithms has been found in the C++ ecosystem. psimpl implements
8 algorithms distributed as a single header file. It also provides a function for
measuring positional errors making it ideal for use in a quality analysis tool for

those algorithms.

3.1 Implementation of a performance benchmark

In this chapter I will explain the approach to improve the performance of a simpli-
fication algorithm in a web browser via WebAssembly. The go-to library for this
kind of operation is Simplify.js. It is the JavaScript implementation of the Douglas-
Peucker algorithm with optional radial distance preprocessing. The library will be
rebuilt in the C programming language and compiled to WebAssembly with Em-
scripten. A web page is built to produce benchmarking insights to compare the two

approaches performance wise.

3.1.1 State of the art: Simplify.js

Simplify.js calls itself a ”tiny high-performance JavaScript polyline simplification li-
brary”P} It was extracted from Leaflet, the "leading open-source JavaScript library
for mobile-friendly interactive maps”[?} Due to its usage in leaflet and Turf.js, a
geospatial analysis library, it is the most common used library for polyline simpli-
fication. The library itself currently has 20,066 weekly downloads while the Turf.js
derivate @turf/simplify has 30,389. Turf.js maintains an unmodified fork of the

library in its own repository.

Yhttps://mourner.giformthub.io/simplify-js/
Onttps://leafletjs.com/

14

Tk W N~

N

ST W N

3.1 Implementation of a performance benchmark 3 METHODOLOGY

The Douglas-Peucker algorithm is implemented with an optional radial distance
preprocessing routine. This preprocessing trades performance for quality. Thus the
mode for disabling this routine is called highest quality.

Interestingly the library expects coordinates to be a list of object with x and
y properties. GeoJSON and TopoJSON however store coordinates in nested array
form (see chapter . Luckily since the library is small and written in JavaScript
any skilled web developer can easily fork and modify the code for his own purpose.
This is even pointed out in the source code. The fact that Turf.js, which can be seen
as a convenience wrapper for processing GeoJSON data, decided to keep the library
as is might indicate some benefit to this format. Listing [4] shows how Turf.js calls
Simplify.js. Instead of altering the source code the data is transformed back and
forth between the formats on each call. It is questionable if this practice is advisable
at all.

function simplifyLine (coordinates, tolerance, highQuality) {
return simplifyJS(coordinates.map(function (coord) {
return {x: coord[0], y: coord[1], z: coord[2]};
}), tolerance, highQuality) .map(function (coords) {
return (coords.z) 7 [coords.x, coords.y, coords.z] : [
coords .x, coords.y];

B

Listing 4: Turf.js usage of simplify.js

Since it is not clear which case is faster, and given how simple the required
changes are, two versions of Simplify.js will be tested. The original version, which
expects the coordinates to be in array-of-objects format and the altered version,
which operates on nested arrays. Listing [5| shows an extract of the changes per-
formed on the library. Instead of using properties, the coordinate values are ac-
cessed by index. Except for the removal of the licensing header the alterations
are restricted to these kind of changes. The full list of changes can be viewed in

1lib/simplify-js-alternative/simplify.diff.

13,14c4,5

< var dx = pl.x - p2.x,

< dy = pl.y - p2.y;

> var dx = p1l[0] - p2[0],
> dy = p1[1] - p2[1];

Listing 5: Snippet of the difference between the original Simplify.js and alternative

15

03O Ui Wi+

el
W= OO

3.1 Implementation of a performance benchmark 3 METHODOLOGY

3.1.2 The webassembly solution

In scope of this thesis a library will be created that implements the same procedure
as Simplify.JS in C code. It will be made available on the web platform through
WebAssembly. In the style of the model library it will be called Simplify.wasm.
The compiler to use will be Emscripten as it is the standard for porting C code to
WebAssembly:.

As mentioned the first step is to port simplify.JS to the C programming language.
The file 1ib/simplify-wasm/simplify.c shows the attempt. It is kept as close to
the JavaScript library as possible. This may result in C-untypical coding style but
prevents skewed results from unexpected optimizations to the procedure itself. The
entry point is not the main-function but a function called simplify. This is specified

to the compiler as can be seen in listing [6]

OPTIMIZE="-03"

simplify.wasm simplify.js: simplify.c
emcc \
${OPTIMIZE} \
--closure 1 \
-s WASM=1 \
-s ALLOW_MEMORY_GROWTH=1 \
-s MODULARIZE=1 \
-s EXPORT_ES6=1 \
-s EXPORTED_FUNCTIONS=’["_simplify", "_malloc", "_free"]’ \
-0 simplify.js \
simplify.c

Listing 6: The compiler call

Furthermore the functions malloc and free from the standard library are made
available for the host environment. Compiling the code through Emscripten pro-
duces a binary file in wasm format and the glue code as JavaScript. These files are
called simplify.wasm and simplify. js respectively.

An example usage can be seen in lib/simplify-wasm/example.html. Even
through the memory access is abstracted in this example the process is still unhandy
and far from a drop-in replacement of Simplify.js. Thus in 1ib/simplify-wasm/
index. js a further abstraction to the Emscripten emitted code was written. The
exported function simplifyWasm handles module instantiation, memory access and
the correct call to the exported wasm function. Finding the correct path to the
wasm binary is not always clear however when the code is imported from another
location. The proposed solution is to leave the resolving of the code-path to an asset

bundler that processes the file in a preprocessing step.

16

More
about

the com-

piler call

=W N

ot

3.1 Implementation of a performance benchmark 3 METHODOLOGY

export async function simplifyWasm(coords, tolerance,
highestQuality) {
const module = await getModule ()
const buffer = storeCoords (module, coords)
const resultInfo = module._simplify(
buffer,
coords.length * 2,
tolerance,
highestQuality
)
module . _free(buffer)
return loadResultAndFreeMemory(module, resultInfo)
}

../lib/simplify—wasm /index.js

Listing shows the function simplifyWasm. Further explanaition will follow

regarding the abstractions getModule, storeCoords and loadResultAndFreeMemory.

Module instantiation will be done on the first call only but requires the function
to be asynchronous. For a neater experience in handling Emscripten modules a
utility function named initEmscriptenE was written to turn the module factory
into a JavaScript Promise that resolves on finished compilation. The usage of this
function can be seen in listing [7} The resulting WebAssembly module is cached in

the variable emscriptenModule.

let emscriptenModule
export async function getModule () {
if (!emscriptenModule)
emscriptenModule = initEmscriptenModule (wasmModuleFactory,
wasmUrl)
return await emscriptenModule

}

Listing 7: My Caption

Storing coordinates into the module memory is done in the function storeCoords.
Emscripten offers multiple views on the module memory. These correspond to the
available WebAssembly data types (e.g. HEAPS, HEAPUS8, HEAPF32, HEAPF64,
)E As Javascript numbers are always represented as a double-precision 64-bit
binary{] (IEEE 754-2008) the HEAP64-view is the way to go to not lose precision.

1 /lib /wasm-util /initEmscripten.js

2https://emscripten.org/docs/api_reference/preamble. js.html#
type-accessors-for-the-memory-model

3https://www.ecma-international.org/ecma-262/6.0/#sec—-4.3.20

17

[\)

O © 00O Ut

3.1 Implementation of a performance benchmark 3 METHODOLOGY

Accordingly the datatype double is used in C to work with the data. Listing
shows the transfer of coordinates into the module memory. In line 3 the memory is
allocated using the exported malloc-function. A JavaScript TypedArray is used for

accessing the buffer such that the loop for storing the values (lines 5 - 8) is trivial.

export function storeCoords (module, coords) {

const flatSize = coords.length * 2

const offset = module._malloc(flatSize * Float64Array.
BYTES_PER_ELEMENT)

const heapView = new Float64Array(module.HEAPF64.buffer, offset,
flatSize)

for (let i = 0; i < coords.length; i++) {
heapView[2 * i] = coords[i] [0]
heapView[2 * i + 1] = coords[i][1]

}

return offset

Listing 8: The storeCoords function

To read the result back from memory we have to look at how the simplification
will be returned in the C code. Listing [J] shows the entry point for the C code. This
is the function that gets called from JavaScript. As expected arrays are represented
as pointers with corresponding length. The first block of code (line 2 - 6) is only
meant for declaring needed variables. Lines 8 to 12 mark the radial distance pre-
processing. The result of this simplification is stored in an auxiliary array named
resultRdDistance. In this case points will have to point to the new array and the
length is adjusted. Finally the Douglas-Peucker procedure is invoked after reserving
enough memory. The auxiliary array can be freed afterwards. The problem now is
to return the result pointer and the array length back to the calling code. The fact
that pointers in Emscripten are represented by an integer will be exploited to return
a fixed size array of two containing the values. A hacky solution but it works. We
can now look back at how the JavaScript code reads the result.

Listing [10] shows the code to read the values back from module memory. The
result pointer and its length are acquired by dereferencing the resultInfo-array.
The buffer to use is the heap for unsigned 32-bit integers. This information can
then be used to align the Float64Array-view on the 64-bit heap. Constructing the
appropriate coordinate representation by reversing the flattening can be looked up in
the same file. It is realised in the unflattenCoords function. At last it is important
to actually free the memory reserved for both the result and the result-information.

The exported method free is the way to go here.

18

© 00~ O Uk Wi

11
12
13
14

15
16
17
18
19
20
21

0O Ui Wi

3.1 Implementation of a performance benchmark 3 METHODOLOGY

int* simplify(double * points, int length, double tolerance, int
highestQuality) {
double sqTolerance = tolerance * tolerance;
double* resultRdDistance = NULL;
double* result = NULL;
int resultlength;

if (!'highestQuality) {
resultRdDistance = malloc(length * sizeof (double));
length = simplifyRadialDist (points, length, sqTolerance,
resultRdDistance);
points = resultRdDistance;

result = malloc(length * sizeof (double));
resultlength = simplifyDouglasPeucker (points, length,
sqTolerance, result);

free(resultRdDistance) ;

int* resultInfo = malloc(2);
resultInfo[0] = (int) result;
resultInfo[1] = resultlength;

return resultlInfo;

Listing 9: Entrypoint in the C-file

export function loadResultAndFreeMemory(module, resultInfo) {
const [resultPointer, resultLength] = new Uint32Array(
module . HEAPU32.buffer,
resultInfo,
2
)
const simplified = new Float64Array(
module . HEAPF64 .buffer,
resultPointer,
resultlLength
)
const coords = unflattenCoords(simplified)
module._free(resultInfo)
module._free(resultPointer)
return coords

Listing 10: Loading coordinates back from module memory

19

3.1 Implementation of a performance benchmark 3 METHODOLOGY

3.1.3 The implementation of a web framework

The perfor