
Performance comparison of simplification
algorithms for polygons in the context of

web applications

Masterarbeit

Institut für Informatik

Universität Augsburg

vorgelegt von

Alfred Melch

Matrikelnummer xxx

Augsburg, August 2019

1. Gutachter: Prof. Dr. Jörg Hähner

2. Gutachter: Prof. Dr. Sabine Timpf

Betreuer: Prof. Dr. Jörg Hähner



Abstract

Abstract goes here



CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Binary instruction sets on the web platform . . . . . . . . . . . . . . 1

1.2 Performance as important factor for web applications . . . . . . . . . 1

1.3 Topology simplification for rendering performance . . . . . . . . . . . 2

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 4

2.1 Generalization in cartography . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Goals of reducing data . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Automated generalization . . . . . . . . . . . . . . . . . . . . 4

2.2 Geodata formats on the Web . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Polyline simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Web runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Introduction to Webassembly . . . . . . . . . . . . . . . . . . 8

3 Methodology 10

3.1 Implementation of a performance benchmark . . . . . . . . . . . . . . 10

3.1.1 State of the art: Simplify.js . . . . . . . . . . . . . . . . . . . 10

3.1.2 The webassembly solution . . . . . . . . . . . . . . . . . . . . 12

3.1.3 The implementation of a web framework . . . . . . . . . . . . 16

3.1.4 External libraries . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.5 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.6 The user interface . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.7 The test data . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 State of the art: psimpl . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Compiling to WebAssembly . . . . . . . . . . . . . . . . . . . 21

3.2.3 The implementation . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 The user interface . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 27

4.1 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Comparing the results of different algorithms . . . . . . . . . . . . . . 27



CONTENTS CONTENTS

5 Discussion 28

6 Conclusion 29

6.1 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



1 INTRODUCTION

1 Introduction

Simplification of polygonal data structures is the task of reducing data points while

preserving topological characteristics. The simplification often takes the form of

removing points that make up the geometry. There are several solutions that tackle

the problem in different ways. This thesis aims to compare and classify these so-

lutions by various heuristics. Performance and compression rate are quantitative

heuristic used. Positional, length and area errors will also be measured to quan-

tify simplification errors. With the rising trend of moving desktop applications to

the web platform also geographic information systems (GIS) have experienced the

shift towards web browsers 1. Performance is critical in these applications. Since

simplification is an important factor to performance the solutions will be tested by

constructing a web application using a technology called WebAssembly.

1.1 Binary instruction sets on the web platform

The recent development of WebAssembly allows code written in various program-

ming languages to be run natively in web browsers. So far JavaScript was the only

native programming language on the web. The goals of WebAssembly are to define

a binary instruction format as a compilation target to execute code at native speed

and taking advantage of common hardware capabilities 2. The integration into the

web platform brings portability to a wide range of platforms like mobile and internet

of things (IoT). The usage of this technology promises performance gains that will

be tested by this thesis. The results can give conclusions to whether WebAssem-

bly is worth a consideration for web applications with geographic computational

aspects. Web GIS is an example technology that would benefit greatly of such an

advancement. Thus far WebAssembly has been shipped to the stable version of

the four most used browser engines 3. The mainly targeted high-level languages for

compilation are C and C++. Also a compiler for Rust and a TypeScript subset has

been developed. It will be explored how existing implementations could easily be

adopted when using a compiler.

1.2 Performance as important factor for web applications

There has been a rapid growth of complex applications running in web-browsers.

These so called progressive web apps (PWA) combine the fast reachability of web

pages with the feature richness of locally installed applications. Even though these

1https://www.esri.com/about/newsroom/arcnews/implementing-web-gis/
2https://webassembly.org/
3https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html]

1



1.3 Topology simplification for rendering performance 1 INTRODUCTION

applications can grow quire complex, the requirement for fast page loads and instant

user interaction still remains. One way to cope this need is the use of compression

algorithms to reduce the amount of data transmitted and processed. In a way

simplification is a form of data compression. Web servers use lossless compression

algorithms like gzip to deflate data before transmission. Browsers that implement

these algorithms can then fully restore the requested ressources resulting in lower

bandwidth usage. The algorithms presented here however remove information from

the data in a way that cannot be restored. This is called lossy compression. The

most common usage on the web is the compression of image data.

1.3 Topology simplification for rendering performance

While compression is often used to minimize bandwidth usage the compression of

geospatial data can particulary influence rendering performance. The bottleneck

for rendering often is the svg transformation used to display topology on the web.

Implementing simplification algorithms for use on the web platform can lead to

smoother user experience when working with large geodata sets.

1.4 Related work

Related Work

1.5 Structure of this thesis

This thesis is structured into a theoretical and a practical component. First the the-

oretical principles will be reviewed. Topology of polygonal data will be explained

as how to describe geodata on the web. A number of algorithms will be introduced

in this section. Each algorithm will be dissected by complexity, characteristics and

the possible influence to the heuristics mentioned above. An introduction to We-

bAssembly will be given here.

In the next chapter the practical implementation will be presented. This section

is divided in two parts since two web applications are produced in this thesis. The

first one is a benchmark comparison of an algorithm implemented in JavaScript and

in WebAssembly. It will be used investigate if performance of established imple-

mentations can be improved by a new technology. The second part is about several

algorithms brought to the web by compiling an existing C++ library. This applica-

tion can be used for qualitative analysis of the algorithms. It will show live results

to see the characteristics and influence of single parameters.

2



1.5 Structure of this thesis 1 INTRODUCTION

The results of the above methods will be shown in chapter 4. After discussion

of the results a concluion will finish the thesis.

3



2 THEORY

2 Theory

In this chapter the theory behind polygon simplification will be explained. The

simplification process is part of generalization in cartography. So first a few words

about it will be dropped do give a broad overview about the topic. It will be

clarified which goals drive the reducing of data quantity, especially in the context of

web applications. Then the data formats will be explained that make up the data.

From there a closer look can be taken how the simplification can be accomplished.

2.1 Generalization in cartography

2.1.1 Goals of reducing data

2.1.2 Automated generalization

2.2 Geodata formats on the Web

Here the data formats that are used through this theses will be explained.

The JavaScript Object Notation (JSON) Data Interchange Format was

derived from the ECMAScript Programming Language Standard4. It is a text format

for the serialization of structured data. As a text format is suites well for the data

exchange between server and client. Also it can easily be consumed by JavaScript.

These characteristics are ideal for web based applications. It does however only sup-

port a limited number of data types. Four primitive ones (string, number, boolean

and null) and two structured ones (objects and array). Objects are an unordered

collection of name-value pairs, while arrays are simply ordered lists of values. JSON

was meant as a replacement for XML as it provides a more human readable format.

Through nesting complex data structures can be created.

The GeoJSON Format is a geospatial data interchange format5. As the name

suggests it is based on JSON and deals with data representing geographic features.

There are several geometry types defined to be compatible with the types in the

OpenGIS Simple Features Implementation Specification for SQL6. These are Point,

MultiPoint, LineString, MultiLineString, Polygon, Multipolygon and the heteroge-

neous GeometryCollection. Listing 1 shows a simple example of a GeoJSON ob-

ject with one point feature. A more complete example can be viewed in the file

./data/example-7946.geojson.

4https://tools.ietf.org/html/rfc8259
5https://tools.ietf.org/html/rfc7946
6https://portal.opengeospatial.org/files/?artifact_id=829

4



2.2 Geodata formats on the Web 2 THEORY

1 {

2 "type": "Feature",

3 "geometry": {

4 "type": "Point",

5 "coordinates": [125.6 , 10.1]

6 },

7 "properties": {

8 "name": "Dinagat Islands"

9 }

10 }

Listing 1: An example for a GeoJSON object

The feature types differ in the format of their coordinates property. A position

is an array of at least two elements representing longitude and latitude. An optional

third element can be added to specify altitude. All cases in this thesis will only deal

with two-dimensional positions. While the coordinates member of a Point-feature

is simply a single position, a LineString-feature describes its geometry through an

Array of at least two positions. More interesting is the specification for Polygons.

It introduces the concept of the linear ring as a closed LineString with at least four

positions where the first and last positions are equivalent. The Polygon’s coordinates

member is an array of linear rings with the first one representing the exterior ring

and all others interior rings, also named surface and holes respectively. At last the

coordinates member of MultiLineStrings and MultiPolygons is defined as a single

array of its singular feature type.

GeoJSON is mainly used for web-based mapping. Since it is based on JSON

it inherits its strength. There is for one the enhanced readability through reduced

markup overhead compared to XML-based data types like GML. Interoperability

with web applications comes for free since the parsing of JSON-objects is integrated

in JavaScript. Unlike the Esri Shapefile format a single file is sufficient to store and

transmit all relevant data, including feature properties.

To its downsides count that a text based cannot store the geometries as efficiently

as it would be possible with a binary format. Also only vector-based data types can

be represented. Another disadvantage can be the strictly non-topologic approach.

Every feature is completely described by one entry. However when there are features

that share common components, like boundaries in neighboring polygons, these data

points will be encoded twice in the GeoJSON object. On the one hand this further

poses concerns about data size. On the other hand it is more difficult to execute

topological analysis on the data set. Luckily there is a related data structure to

tackle this problem.

5



2.2 Geodata formats on the Web 2 THEORY

Extract more info about topology:

https://www.esri.com/news/arcuser/0401/topo.html

TopoJSON is an extension of GeoJSON and aims to encode datastructures into

a shared topology7. It supports the same geometry types as GeoJSON. It differs

in some additional properties to use and new object types like ”Topology” and

”GeometryCollection”. Its main feature is that LineStrings, Polygons and their

multiplicary equivalents must define line segments in a common property called find bet-

ter word”arcs”. The geometries themselves then reference the arcs from with they are made

up. This reduces redundancy of data points. Another feature is the quantization of

positions. To use it one can define a ”transform” object which specifies a scale and

translate point to encode all coordinates. Together with delta-encoding of position

arrays one obtains integer values better suited for efficient serialization and reduced

file size.
Explain why topology-preserving shape simplification is important

Coordinate representation Both GeoJSON and TopoJSON represent positions

as an array of numbers. The elements depict longitude, latitude and optionally

altitude in that order. For simplicity this thesis will deal with two-dimensional

positions only. A polyline is described by creating an array of these positions as

seen in listing 2.

1 [[102.0 , 0.0], [103.0 , 1.0], [104.0 , 0.0], [105.0 , 1.0]]

Listing 2: Polyline coordinates in nested-array form

There will be however one library in this thesis which expects coordinates in a

different format. Listing 3 shows a polyline in the sense of this library. Here one

location is represented by an object with x and y properties.

1 [{x: 102.0, y: 0.0}, {x: 103.0, y: 1.0}, {x: 104.0, y: 0.0}, {x:

105.0 , y: 1.0}]

Listing 3: Polyline in array-of-objects form

To distinguish these formats in future references the first first format will be

called nested-array format, while the latter will be called array-of-objects format.

7https://github.com/topojson/topojson-specification

6



2.3 Polyline simplification 2 THEORY

2.3 Polyline simplification

2.3.1 Heuristics

Positional errors

Length errors

Area Errors

2.3.2 Algorithms

Compression algorithms.

n-th point algorithm

Random-point routine

Radial distance algorithm

Perpendicular distance algorithm

Reumann-Witkam simplification

Opheim simplification

Lang simplification

Douglas-Peucker simplification

with reduction parameter

Jenks simplification

Visvalingam-Whyatt simplification

Zhao-Saalfeld simplification

7



2.4 Web runtimes 2 THEORY

2.3.3 Summary

2.4 Running the algorithms on the web platform

JavaScript has been the only native programming language of web browsers for a

long time. With the development of WebAssembly there seems to be an alternative

on its way with high promises. This technology and the benefits and drawbacks to

it will be explained in this chapter. It will be used to execute the algorithms under

inspection in this thesis.

2.4.1 Introduction to Webassembly

WebAssembly is designed by engineers from the four major browser vendors (Mozilla,

Google, Apple, Microsoft). It is a portable low-level bytecode designed as target for

compilationof high-level languages. By being an abstraction over modern hardware

it is language-, hardware-, and platform-independent. It is intended to be run in

a stack-based virtual machine. This way it is not restrained to the Web platform

or a JavaScript environment. Some key concepts are the structuring into modules

with exported and imported definitions and the linear memory model. Memory is

represented as a large array of bytes that can be dynamically grown. Security is

ensured by the linear memory being disjoint from code space, the execution stack

and the engine’s data structures. Another feature of WebAssembly is the possibility

of streaming compilation and the parallelization of compilation processes. 8

Benefits of WebAssembly The goals of WebAssembly have been well defined.

It’s semantics are intended to be safe and fast to execute and bring portability by

language-, hardware- and platform-independence. Furthermore it should be deter-

ministic and have simple interoperability with the web platform. For its representa-

tion the following goals are declared. It shall be compact and easy to decode, validate

and compile. Parallelization and streamable compilation are also mentioned.

These goals are not specific to WebAssembly. They can be seen as properties

that a low-level compilation target for the web should have. In fact there have

been previous attempts to run low-level code on the web. Examples are Microsoft’s

ActiveX, Native Client (NaCl) and Emscripten each having issues complying with

the goals. Java and Flash are examples for managed runtime plugins. Their usage

is declining however not at least due to falling short on the goals mentioned above.

It is often stated that WebAssembly can bring performance benefits. It makes

8https://people.mpi-sws.org/~rossberg/papers/Haas,\%20Rossberg,\%20Schuff,

\%20Titzer,\%20Gohman,\%20Wagner,\%20Zakai,\%20Bastien,\%20Holman\%20-\

%20Bringing\%20the\%20Web\%20up\%20to\%20Speed\%20with\%20WebAssembly.pdf

8



2.4 Web runtimes 2 THEORY

sense that statically typed machine code beats scripting languages performance wise.

It has to be observed however if the overhead of switching contexts will neglect this

performance gain. JavaScript has made a lot of performance improvements over

the past years. Not at least Googles development on the V8 engine has brought

JavaScript to an acceptable speed for extensive calculations. The engine observes

the execution of running javaScript code and will perform optimizations that can

be compared to optimizations of compilers.

The JavaScript ecosystem has rapidly evolved the past years. Thanks to pack-

age managers like bower, npm and yarn it is simple to pull code from external

sources into ones codebase. Initially thought for server sided JavaScript execution

the ecosystem has found its way into front-end development via module bundlers

like browserify, webpack and rollup. In course of this growth many algorithms and

implementations have been ported to JavaScript for use on the web. With We-

bAssembly this ecosystem can be broadened even further. By lifting the language

barrier existing work of many more programmers can be reused on the web. Whole

libraries exclusive for native development could be imported by a few simple tweaks.

Codecs not supported by browsers can be made available for use in any browser sup-

porting WebAssembly. One example could be the promising AV1 video codec. In

this these the C++ library psimpl will be utilized to bring polyline simplification to

the web. This library already implements various algorithms for this task. It will

be further introduced in chapter 3.2.1.

Existing compilers

emscripten

assemblyscript

rust

Technical hurdles
Managing memory

passing arrays

9



3 METHODOLOGY

3 Methodology

The benefits that WebAssembly promises shall be tested in two seperate web pages.

One for the performance measurements and one to test the integration of existing

libraries.

Performance As it is the most applicated algorithm the Douglas-Peucker algo-

rithm will be used for measuring performance. A JavaScript implementation is

quickly found. SimplifyJS. It is used by Turf, a geospatial analysis library. To

produce comparable results the implementation will be based on this package. A

separate library, called SimplifyWASM, written in C will be created that mimics the

JavaScript original.

Integrating an existing C++ library An existing implementation of several

simplification algorithms has been found in the C++ ecosystem. psimpl implements

8 algorithms distributed as a single header file. It also provides a function for

measuring positional errors making it ideal for use in a quality analysis tool for

those algorithms.

3.1 Implementation of a performance benchmark

In this chapter I will explain the approach to improve the performance of a simpli-

fication algorithm in a web browser via WebAssembly. The go-to library for this

kind of operation is Simplify.js. It is the JavaScript implementation of the Douglas-

Peucker algorithm with optional radial distance preprocessing. The library will be

rebuilt in the C programming language and compiled to WebAssembly with Em-

scripten. A web page is built to produce benchmarking insights to compare the two

approaches performance wise.

3.1.1 State of the art: Simplify.js

Simplify.js calls itself a ”tiny high-performance JavaScript polyline simplification li-

brary”9. It was extracted from Leaflet, the ”leading open-source JavaScript library

for mobile-friendly interactive maps”10. Due to its usage in leaflet and Turf.js, a

geospatial analysis library, it is the most common used library for polyline simpli-

fication. The library itself currently has 20,066 weekly downloads while the Turf.js

derivate @turf/simplify has 30,389. Turf.js maintains an unmodified fork of the

library in its own repository. leaflet

down-

loads

9https://mourner.giformthub.io/simplify-js/
10https://leafletjs.com/

10



3.1 Implementation of a performance benchmark 3 METHODOLOGY

The Douglas-Peucker algorithm is implemented with an optional radial distance

preprocessing routine. This preprocessing trades performance for quality. Thus the

mode for disabling this routine is called highest quality.

Interestingly the library expects coordinates to be a list of object with x and

y properties. GeoJSON and TopoJSON however store coordinates in nested array

form (see chapter 2.2). Luckily since the library is small and written in JavaScript

any skilled web developer can easily fork and modify the code for his own purpose.

This is even pointed out in the source code. The fact that Turf.js, which can be seen

as a convenience wrapper for processing GeoJSON data, decided to keep the library

as is might indicate some benefit to this format. Listing 4 shows how Turf.js calls

Simplify.js. Instead of altering the source code the data is transformed back and

forth between the formats on each call. It is questionable if this practice is advisable

at all.

1 function simplifyLine(coordinates , tolerance , highQuality) {

2 return simplifyJS(coordinates.map(function (coord) {

3 return {x: coord [0], y: coord[1], z: coord [2]};

4 }), tolerance , highQuality).map(function (coords) {

5 return (coords.z) ? [coords.x, coords.y, coords.z] : [

coords.x, coords.y];

6 });

7 }

Listing 4: Turf.js usage of simplify.js

Since it is not clear which case is faster, and given how simple the required

changes are, two versions of Simplify.js will be tested. The original version, which

expects the coordinates to be in array-of-objects format and the altered version,

which operates on nested arrays. Listing 5 shows an extract of the changes per-

formed on the library. Instead of using properties, the coordinate values are ac-

cessed by index. Except for the removal of the licensing header the alterations

are restricted to these kind of changes. The full list of changes can be viewed in

lib/simplify-js-alternative/simplify.diff.

1 13,14c4 ,5

2 < var dx = p1.x - p2.x,

3 < dy = p1.y - p2.y;

4 ---

5 > var dx = p1[0] - p2[0],

6 > dy = p1[1] - p2[1];

Listing 5: Snippet of the difference between the original Simplify.js and alternative

11



3.1 Implementation of a performance benchmark 3 METHODOLOGY

3.1.2 The webassembly solution

In scope of this thesis a library will be created that implements the same procedure

as Simplify.JS in C code. It will be made available on the web platform through

WebAssembly. In the style of the model library it will be called Simplify.wasm.

The compiler to use will be Emscripten as it is the standard for porting C code to

WebAssembly.

As mentioned the first step is to port simplify.JS to the C programming language.

The file lib/simplify-wasm/simplify.c shows the attempt. It is kept as close to

the JavaScript library as possible. This may result in C-untypical coding style but

prevents skewed results from unexpected optimizations to the procedure itself. The

entry point is not the main-function but a function called simplify. This is specified

to the compiler as can be seen in listing 6.

1 OPTIMIZE="-O3"

2
3 simplify.wasm simplify.js: simplify.c

4 emcc \

5 ${OPTIMIZE} \

6 --closure 1 \

7 -s WASM=1 \

8 -s ALLOW_MEMORY_GROWTH =1 \

9 -s MODULARIZE =1 \

10 -s EXPORT_ES6 =1 \

11 -s EXPORTED_FUNCTIONS=’[" _simplify", "_malloc", "_free"]’ \

12 -o simplify.js \

13 simplify.c

Listing 6: The compiler call

More

about

the com-

piler call

Furthermore the functions malloc and free from the standard library are made

available for the host environment. Compiling the code through Emscripten pro-

duces a binary file in wasm format and the glue code as JavaScript. These files are

called simplify.wasm and simplify.js respectively.

An example usage can be seen in lib/simplify-wasm/example.html. Even

through the memory access is abstracted in this example the process is still unhandy

and far from a drop-in replacement of Simplify.js. Thus in lib/simplify-wasm/

index.js a further abstraction to the Emscripten emitted code was written. The

exported function simplifyWasm handles module instantiation, memory access and

the correct call to the exported wasm function. Finding the correct path to the

wasm binary is not always clear however when the code is imported from another

location. The proposed solution is to leave the resolving of the code-path to an asset

bundler that processes the file in a preprocessing step.

12



3.1 Implementation of a performance benchmark 3 METHODOLOGY

1 export async function simplifyWasm(coords , tolerance ,

highestQuality) {

2 const module = await getModule ()

3 const buffer = storeCoords(module , coords)

4 const resultInfo = module._simplify(

5 buffer ,

6 coords.length * 2,

7 tolerance ,

8 highestQuality

9 )

10 module._free(buffer)

11 return loadResultAndFreeMemory(module , resultInfo)

12 }

../lib/simplify–wasm/index.js

Listing 3.1.2 shows the function simplifyWasm. Further explanaition will follow

regarding the abstractions getModule, storeCoords and loadResultAndFreeMemory.

Module instantiation will be done on the first call only but requires the function

to be asynchronous. For a neater experience in handling Emscripten modules a

utility function named initEmscripten11 was written to turn the module factory

into a JavaScript Promise that resolves on finished compilation. The usage of this

function can be seen in listing 7. The resulting WebAssembly module is cached in

the variable emscriptenModule.

1 let emscriptenModule

2 export async function getModule () {

3 if (! emscriptenModule)

4 emscriptenModule = initEmscriptenModule(wasmModuleFactory ,

wasmUrl)

5 return await emscriptenModule

6 }

Listing 7: My Caption

Storing coordinates into the module memory is done in the function storeCoords.

Emscripten offers multiple views on the module memory. These correspond to the

available WebAssembly data types (e.g. HEAP8, HEAPU8, HEAPF32, HEAPF64,

...)12. As Javascript numbers are always represented as a double-precision 64-bit

binary13 (IEEE 754-2008) the HEAP64-view is the way to go to not lose precision.

11/lib/wasm-util/initEmscripten.js
12https://emscripten.org/docs/api_reference/preamble.js.html#

type-accessors-for-the-memory-model
13https://www.ecma-international.org/ecma-262/6.0/#sec-4.3.20

13



3.1 Implementation of a performance benchmark 3 METHODOLOGY

Accordingly the datatype double is used in C to work with the data. Listing 8

shows the transfer of coordinates into the module memory. In line 3 the memory is

allocated using the exported malloc-function. A JavaScript TypedArray is used for

accessing the buffer such that the loop for storing the values (lines 5 - 8) is trivial.

1 export function storeCoords(module , coords) {

2 const flatSize = coords.length * 2

3 const offset = module._malloc(flatSize * Float64Array.

BYTES_PER_ELEMENT)

4 const heapView = new Float64Array(module.HEAPF64.buffer , offset ,

flatSize)

5 for (let i = 0; i < coords.length; i++) {

6 heapView [2 * i] = coords[i][0]

7 heapView [2 * i + 1] = coords[i][1]

8 }

9 return offset

10 }

Listing 8: The storeCoords function

programming:

Check

for

coords

length <

2

To read the result back from memory we have to look at how the simplification

will be returned in the C code. Listing 9 shows the entry point for the C code. This

is the function that gets called from JavaScript. As expected arrays are represented

as pointers with corresponding length. The first block of code (line 2 - 6) is only

meant for declaring needed variables. Lines 8 to 12 mark the radial distance pre-

processing. The result of this simplification is stored in an auxiliary array named

resultRdDistance. In this case points will have to point to the new array and the

length is adjusted. Finally the Douglas-Peucker procedure is invoked after reserving

enough memory. The auxiliary array can be freed afterwards. The problem now is

to return the result pointer and the array length back to the calling code. The fact Fact

check.

evtl un-

signed

that pointers in Emscripten are represented by an integer will be exploited to return

a fixed size array of two containing the values. A hacky solution but it works. We

can now look back at how the JavaScript code reads the result.

Listing 10 shows the code to read the values back from module memory. The

result pointer and its length are acquired by dereferencing the resultInfo-array.

The buffer to use is the heap for unsigned 32-bit integers. This information can

then be used to align the Float64Array-view on the 64-bit heap. Constructing the

appropriate coordinate representation by reversing the flattening can be looked up in

the same file. It is realised in the unflattenCoords function. At last it is important

to actually free the memory reserved for both the result and the result-information.

The exported method free is the way to go here.

14



3.1 Implementation of a performance benchmark 3 METHODOLOGY

1 int* simplify(double * points , int length , double tolerance , int

highestQuality) {

2 double sqTolerance = tolerance * tolerance;

3 double* resultRdDistance = NULL;

4 double* result = NULL;

5 int resultLength;

6
7 if (! highestQuality) {

8 resultRdDistance = malloc(length * sizeof(double));

9 length = simplifyRadialDist(points , length , sqTolerance ,

resultRdDistance);

10 points = resultRdDistance;

11 }

12
13 result = malloc(length * sizeof(double));

14 resultLength = simplifyDouglasPeucker(points , length ,

sqTolerance , result);

15 free(resultRdDistance);

16
17 int* resultInfo = malloc (2);

18 resultInfo [0] = (int) result;

19 resultInfo [1] = resultLength;

20 return resultInfo;

21 }

Listing 9: Entrypoint in the C-file

1 export function loadResultAndFreeMemory(module , resultInfo) {

2 const [resultPointer , resultLength] = new Uint32Array(

3 module.HEAPU32.buffer ,

4 resultInfo ,

5 2

6 )

7 const simplified = new Float64Array(

8 module.HEAPF64.buffer ,

9 resultPointer ,

10 resultLength

11 )

12 const coords = unflattenCoords(simplified)

13 module._free(resultInfo)

14 module._free(resultPointer)

15 return coords

Listing 10: Loading coordinates back from module memory

15



3.1 Implementation of a performance benchmark 3 METHODOLOGY

3.1.3 The implementation of a web framework

The performance comparison of the two methods will be realized in a web page.

It will be a built as a front-end web-application that allows the user to specify

the input parameters of the benchmark. These parameters are: The polyline to

simplify, a range of tolerances to use for simplification and if the so called high

quality mode shall be used. By building this application it will be possible to test a

variety of use cases on multiple devices. Also the behavior of the algorithms can be

researched under different preconditions. In the scope of this thesis a few cases will

be investigated. The application structure will now be introduced.

3.1.4 External libraries

The dynamic aspects of the web page will be built in JavaScript to make it run in the

browser. Webpack14 will be used to bundle the application code and use compilers

like babel15 on the source code. As mentioned in section 3.1.2 the bundler is also

useful for handling references to the WebAssembly binary as it resolves the filename

to the correct download path to use. There will be intentionally no transpiling of

the JavaScript code to older versions of the ECMA standard. This is often done to

increase compatibility with older browsers. Luckily this is not a requirement in this

case and by refraining from this practice there will also be no unintentional impact

on the application performance. Libraries in use are Benchmark.js16 for statistically

significant benchmarking results, React17 for the building the user interface and

Chart.js18 for drawing graphs.

3.1.5 The framework

The web page consist of static and dynamic content. The static parts refer to the

header and footer with explanation about the project. Those are written directly

into the root HTML document. The dynamic parts are injected by JavaScript.

Those will be further discussed in this chapter as they are the main application

logic.

The web app is built to test a variety of cases with multiple datapoints. As

mentioned Benchmark.js will be used for statistically significant results. It is however

rather slow as it needs about 5 to 6 seconds per datapoint. This is why multiple types

of benchmarking methods are implemented. Figure 3.1.5 shows the corresponding

14https://webpack.js.org/
15https://babeljs.io/
16https://benchmarkjs.com/
17https://reactjs.org/
18https://www.chartjs.org/

16



3.1 Implementation of a performance benchmark 3 METHODOLOGY

Figure 1: UML diagram of the benchmarking application

UML diagram of the application. One can see the UI components in the top-left

corner. The root component is App. It gathers all the internal state of its children

and passes state down where it is needed.

In the upper right corner the different Use-Cases are listed. These cases im-

plement a function "fn" to benchmark. Additional methods for setting up the

function and clean up afterwards can be implemented as given by the parent class

BenchmarkCase. Concrete cases can be created by instantiating one of the Bench-

markCases with a defined set of parameters. There are three charts that will be

rendered using a subset of these cases. These are:

• Simplify.js vs Simplify.wasm - This Chart shows the performance of the

simplification by Simplify.js, the altered version of Simplify.js and the newly

developed Simplify.wasm. Cases

• Simplify.wasm runtime analysis - To further gain insights to WebAssem-

bly performance this stacked barchart shows the runtime of a call to Sim-

17



3.1 Implementation of a performance benchmark 3 METHODOLOGY

plify.wasm. It is partitioned into time spent for preparing data (storeCords),

the algorithm itself and the time it took for the coordinates being restored

from memory (loadResult).

• Turf.js method runtime analysis - The last chart will use a similar struc-

ture. This time it analyses the performance impact of the back and forth

transformation of data used in Truf.js. Cases

On the bottom the different types of Benchmarks implemented can be seen.

They all implement the abstract measure function to return the mean time to run

a function specified in the given BenchmarkCase. The IterationsBenchmark runs

the function a specified number of times, while the OpsPerTimeBenchmark always

runs a certain amount of milliseconds to tun as much iterations as possible. Both

methods got their benefits and drawbacks. Using the iterations approach one cannot

determine the time the benchmark runs beforehand. With fast devices and a small

number of iterations one can even fall in the trap of the duration falling under the

accuracy of the timer used. Those results would be unusable of course. It is however

a very fast way of determining the speed of a function. And it holds valuable

for getting a first approximation of how the algorithms perform over the span of

datapoints. The second type, the operations per time benchmark, seems to overcome

this problem. It is however prune to garbage collection, engine optimizations and

other background processes. 19

Benchmark.js combines these approaches. In a first step it approximates the

runtime in a few cycles. From this value it calculates the number of iterations to

reach an uncertainty of at most 1%. Then the samples are gathered. 20 more

about

Bench-

mark.js

For running multiple benchmarks the class BenchmarkSuite was created. It

takes a list of BenchmarkCases and runs them through a BenchmarkType. The

Suite manages starting, pausing and stopping of going through list. It updates

the statistics gathered on each cycle. By injecting an onCycle method, the App

component can give live feedback about the progress.

Add digram: state machine for suite

Explain state machine

3.1.6 The user interface

The user interface has three regions. One for configuring input parameters. One for

controlling the benchmark process and at last a diagram of the results.

19https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
20http://monsur.hossa.in/2012/12/11/benchmarkjs.html

18



3.1 Implementation of a performance benchmark 3 METHODOLOGY

Figure 2: The user interface for benchmarking application. (not final)

19



3.2 Algorithm comparison 3 METHODOLOGY

Settings At first the input parameters of the algorithm have to be specified. For

that there are some polylines prepared to choose from. They are introduced in

chapter 3.1.7. Instead of testing a single tolerance value the user can specify a

range. This way the behavior of the algorithms can be observed in one chart. The

high Quality mode got its name from Simplify.js. If it is enabled there will be no

radial-distance preprocessing step before applying the Douglas-Peucker routine. The

next option determines which benchmarks will be run. The options are mentioned

in chapter 3.1.5. One of the three benchmark methods implemented can be selected.

Depending on the method chosen additional options will show to further specify the

benchmark parameters. The last option deals with chart rendering. Debouncing

limits the rate at which functions fire. In this case the chart will delay rendering

when datapoints come in at a fast rate.

Run Benchmark This is the control that displays the status of the benchmark

suite. Here benchmarks can be started, stopped, paused and resumed. It also shows

the progress of the benchmarks completed in percentage and absolute numbers.

Chart

3.1.7 The test data

3.2 Compiling an existing C++ library for use on the web

In this chapter I will explain how an existing C++ library was utilized compare

different simplification algorithms in a web browser. The library is named psimpl

and was written in 2011 from Elmar de Koning. It implements various Algorithms

used for polyline simplification. This library will be compiled to WebAssembly us-

ing the Emscripten compiler. Furthermore a Web-Application will be created for

interactively exploring the Algorithms. The main case of application is simplify-

ing polygons, but also polylines will be supported. The data format used to read

in the data will be GeoJSON. To maintain topological correctness a intermediate

conversion to TopoJSON will be applied if requested.

3.2.1 State of the art: psimpl

psimpl is a generic C++ library for various polyline simplification algorithms.

It consists of a single header file psimpl.h. The algorithms implemented are Nth

point, distance between points, perpendicular distance, Reumann-Witkam, Opheim,

Lang, Douglas-Peucker and Douglas-Peucker variation. It has to be noted, that

20



3.2 Algorithm comparison 3 METHODOLOGY

the Douglas-Peucker implementation uses the distance between points routine, also

named the radial distance routine, as preprocessing step just like Simplify.js (Section

3.1.1). All these algorithms have a similar templated interface. The goal now is to

prepare the library for a compiler.

Describe the error statistics function of psimpl

3.2.2 Compiling to WebAssembly

As in the previous chapter the compiler created by the Emscripten project will be

used. This time the code is not directly meant to be consumed by a web application.

It is a generic library. There are no entry points defined that Emscripten can export

in WebAssembly. So the entry points will be defined in a new package named

psimpl-js. It will contain a C++ file that uses the library, the compiled code and

the JavaScript files needed for consumption in a JavaScript project. psimpl makes

heavy use of C++ template functions which cannot be handled by JavaScript. So

there will be entry points written for each exported algorithm. These entry points

are the point of intersection between JavaScript and the library. Listing 11 shows one

example. They all follow the same procedure. First the pointer given by JavaScript

is interpreted as a double-pointer in line 2. This is the beginning of the coordinates

array. psimpl expects the first and last point of an iterator so the pointer to the

last point is calculated (line 3). The appropriate function template from psimpl is

instantiated and called with the other given parameters (line 5). The result is stored

in an intermediate vector.

1 val douglas_peucker(uintptr_t ptr , int length , double tol) {

2 double* begin = reinterpret_cast <double*>(ptr);

3 double* end = begin + length;

4 std::vector <double > resultCoords;

5 psimpl :: simplify_douglas_peucker <2>(begin , end , tol , std::

back_inserter(resultCoords));

6 return val(typed_memory_view(resultCoords.size(), &resultCoords

[0]));

7 }

Listing 11: One entrypoint to the C++ code

Since this is C++ the the capabilities of Emscripten’s Embind can be utilized.

Embind is realized in the libraries bind.h21 and val.h22. val.h is used for translit-

erating JavaScript to C++. In this case it is used for the type conversion of C++

Vectors to JavaScript’s Typed Arrays as seen at the end of listing 11. On the other

21https://emscripten.org/docs/api_reference/bind.h.html#bind-h
22https://emscripten.org/docs/api_reference/val.h.html#val-h

21



3.2 Algorithm comparison 3 METHODOLOGY

hand bind.h is used for for binding C++ functions, classes, or enumerations to

from JavaScript callable names. Aside from providing a better developer experience

this also prevents name mangling in cases where functions are overloaded. Instead

of listing the exported functions in the compiler command or annotating it with

EMSCRIPTEN KEEPALIVE the developer gives a pointer to the object to bind. Listing

12 shows each entry point bound to a readable name and at last the registered vec-

tor datatype. The parameter my module is merely for marking a group of related

bindings to avoid name conflicts in bigger projects.

1 EMSCRIPTEN_BINDINGS(my_module) {

2 function("nth_point", &nth_point);

3 function("radial_distance", &radial_distance);

4 function("perpendicular_distance", &perpendicular_distance);

5 function("reumann_witkam", &reumann_witkam);

6 function("opheim", &opheim);

7 function("lang", &lang);

8 function("douglas_peucker", &douglas_peucker);

9 function("douglas_peucker_n", &douglas_peucker_n);

10 register_vector <double >("vector <double >");

11 }

Listing 12: Emscripten bindings

Compiler call (–bind)

The library code on JavaScript side is similar to the one in chapter 3.1.2. This

time a function is exported per routine.

More about javascript glue code with listing callSimplification.

3.2.3 The implementation

The implementation is just as in the last chapter a web page and thus JavaScript

is used for the interaction. The source code is bundled with Webpack. React

is the UI Component library and babel is used to transform JSX to JavaScript.

MobX23 is introduced as a state management library. It applies functional reactive

programming by giving the utility to declare observable variables and triggering

the update of derived state and other observers intelligently. To do that MobX

observes the usage of observable variables so that only dependent observers react

on updates. In contrast to other state libraries MobX does not require the state to

be serializable. Many existing data structures can be observed like objects, arrays

and class instances. It also does not constrain the state to a single centralized store

like Redux24 does. The final state diagram can be seen in listing 3. It represents

23https://mobx.js.org/
24https://redux.js.org/

22



3.2 Algorithm comparison 3 METHODOLOGY

the application state in an object model. Since this has drawbacks in showing the

information flow the observable variables are marked in red, and computed ones in

blue.

Figure 3: The state model of the application

On the bottom the three main state objects can be seen. They are implemented

as singletons as they represent global application state. Each of them will now be

explained.

MapState holds state relevant for the map display. An array of TileLayers de-

fines all possible background layers to choose from. The selected one is stored in

selectedTileLayerId. The other two variables toggle the display of the vector

layers to show.

AlgorithmState stores all the information about the simplification algorithms to

choose from. The class Algorithm acts as a generalization interface. Each algorithm

defines which fields are used to interact with its parameters. These fields hold their

current value, so the algorithm can compute its parameters array at any time. The

fields also define additional restrictions in their props attribute like the number

23



3.2 Algorithm comparison 3 METHODOLOGY

range from which to choose from. An integer field for example, like the n value

in the Nth point algorithm, would instantiate a range field with a step value of

one. The ToleranceRange however, which is modeled as its own subclass due to its

frequent usage, allows for smaller steps to represent decimal numbers.

FeatureState encapsulates the state of the vector features. Each layer is repre-

sented in text form and object format of the GeoJSON standard. The text form is

needed as a serializable form for detecting whether the map display needs to update

on an action. As the original features come from file or the server, the text represen-

tation is the source of truth and the object format derives from it. The simplified

features are asynchronously calculated. This process is outsourced to a debounced

reaction that updates the state upon finish.

3.2.4 The user interface

After explaining the state model the User Interface (UI) shall be explained. The

interface is implemented in components which are modeled in a shallow hierarchy.

They represent and update the application state. In listing 4 the resulting web page

is shown. The labeled regions correspond to the components. Their behavior will

be explained in the following. Insert

final pic-

ture.

Red

boxes

around

regions

Make ui

fit de-

scription

Leaflet Map The big region on the left marks the Leaflet map. Its main use is

the visualization of Features. The layers to show are one background tile layer, the

original and the simplified features. Original marks the user specified input features

for simplification. These are marked in blue with a thin border. The simplified

features are laid on top in a red styling. Aside from the default control for zooming

on the top left the map contains a info widget showing the length of the currently

specified tolerance on the top right.

Background Layers Control The first component in the Options panel is a

simple radio button group for choosing the background layer of the map or none

at all. They are provided by the OpenStreetMap (OSM) foundation25. By expe-

rience the layer ”OpenStreetMap DE” provides better loading times in Germany.

”OpenStreetMap Mapnik” is considered the standard OSM tile layer26.

Data Selection Here the input layer can be specified. Either by choosing one of

the prepared data sets or by selecting a locally stored GeoJSON file. The prepared

25https://wiki.osmfoundation.org/wiki/Main_Page
26https://wiki.openstreetmap.org/wiki/Featured_tile_layers

24



3.2 Algorithm comparison 3 METHODOLOGY

Figure 4: The user interface for the algorithm comparison. (not final)

data will be loaded from the server upon selection by an Ajax call. Ajax stands

for asynchronous JavaScript and XML and describes the method of dispatching an

HTTP request from the web application without reloading the page. This way

not all of the data has to be loaded on initial page load. On the other hand the

user can select a file with an HTML input or via drag & drop. For the latter the

external package ”file-drop-element” is used27. It is a custom element based on the

rather recent Custom Elements specification28. It allows the creation of new HTML

elements. In this case it is an element called ”file-drop” that encapsulates the drag

& drop logic and provides a simple interface using attributes and events. Listing 13

shows the use of the element. The mime type is restricted by the accept attribute

27https://github.com/GoogleChromeLabs/file-drop#readme
28https://w3c.github.io/webcomponents/spec/custom/

25



3.2 Algorithm comparison 3 METHODOLOGY

to GeoJSON files.

1 <file -drop accept="application/geo+json">Drop area</file -drop>

Listing 13: The file-drop element in use

Layer Control This element serves the purpose of toggling the display of the vec-

tor layers. The original and the simplified features can be independently displayed

or be hidden. If features have been loaded, the filename will be shown here.

Simplification Control The last element in this section is the control for the

simplification parameters. At first the user can choose if a conversion to TopoJSON

should be performed before simplification. Then the algorithm itself can be selected.

The parameters change to fit the requirements of the algorithm. The update of one

of the parameters trigger live changes in the application state so the user can get

direct feedback how the changes affect the geometries.

26



4 RESULTS

4 Results

4.1 Benchmark results

4.2 Comparing the results of different algorithms

27



5 DISCUSSION

5 Discussion

28



6 CONCLUSION

6 Conclusion

6.1 Enhancements

Enhancement: Line Smoothing as preprocessing step

6.2 Future Work

29



LIST OF FIGURES LIST OF FIGURES

List of Figures

1 UML diagram of the benchmarking application . . . . . . . . . . . . 17

2 The user interface for benchmarking application. (not final) . . . . . 19

3 The state model of the application . . . . . . . . . . . . . . . . . . . 23

4 The user interface for the algorithm comparison. (not final) . . . . . . 25

30



LISTINGS LISTINGS

Listings

1 An example for a GeoJSON object . . . . . . . . . . . . . . . . . . . 5

2 Polyline coordinates in nested-array form . . . . . . . . . . . . . . . . 6

3 Polyline in array-of-objects form . . . . . . . . . . . . . . . . . . . . . 6

4 Turf.js usage of simplify.js . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Snippet of the difference between the original Simplify.js and alternative 11

6 The compiler call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 My Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 The storeCoords function . . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Entrypoint in the C-file . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Loading coordinates back from module memory . . . . . . . . . . . . 15

11 One entrypoint to the C++ code . . . . . . . . . . . . . . . . . . . . 21

12 Emscripten bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

13 The file-drop element in use . . . . . . . . . . . . . . . . . . . . . . . 26

31


	Introduction
	Binary instruction sets on the web platform
	Performance as important factor for web applications
	Topology simplification for rendering performance
	Related work
	Structure of this thesis

	Theory
	Generalization in cartography
	Goals of reducing data
	Automated generalization

	Geodata formats on the Web
	Polyline simplification
	Heuristics
	Algorithms
	Summary

	Web runtimes
	Introduction to Webassembly


	Methodology
	Implementation of a performance benchmark
	State of the art: Simplify.js
	The webassembly solution
	The implementation of a web framework
	External libraries
	The framework
	The user interface
	The test data

	Algorithm comparison
	State of the art: psimpl
	Compiling to WebAssembly
	The implementation
	The user interface


	Results
	Benchmark results
	Comparing the results of different algorithms

	Discussion
	Conclusion
	Enhancements
	Future Work


