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1 INTRODUCTION

1 Introduction

Compression of polygonal data structures is the task of simplifying geometries while

preseving topological characteristics. The simplification often takes the form of re-

moving points that make up the geometry. There are several solutions that tackle the

problem in different ways. This thesis aims to compare and classify these solutions

by various heuristics. Performance and compression rate are quantitative heuristic

used. Positional, length and area errors will also be measured to quantify simplifi-

cation errors. Qualitative heuristics will be determined by a user study. With the

rising trend of moving desktop applications to the web platform also geographic in-

formation systems (GIS) have experienced the shift towards web browsers [example

ESRI Web Gis]. Performance is critical in these applications. Since simplification

is an important factor to performance the solutions will be tested by constructing a

web application using a technology called WebAssembly.

1.1 Binary instruction sets on the web platform

The recent development of WebAssembly allows code written in various program-

ming languages to be run natively in web browsers. A privilege thus far only granted

to the Javascript programming language. The goals of WebAssembly are to define

a binary instruction format as a compilation target to execute code at native speed

and taking advantage of common hardware capabilities [web-source wasm]. The

integration into the web platform brings portability to a wide range of platforms

like mobile and internet of things (IoT). The usage of this technology promises

performance gains that will be tested by this thesis. The results can give conclu-

sions to whether WebAssembly is worth a consideration for web applications with

geographic computational aspects. WebGIS is an example technology that would

benefit greatly of such an advancement. Thus far WebAssembly has been shipped

to the stable version of the four most used browser engines [source]. The mainly

targeted high-level languages for compilation are C and C++ [wasm-specs]. Also a

compiler for Rust has been developed [rust-wasm working group]. It will be explored

how existing implementations could easily be adopted when using a compiler.

1.2 Performance as important factor for web applications

Performance is one of the factors users complain the most about in websites. [Some

study] shows that insufficient UI-performance is the main reason for negative user

experience. [Another study] states that users will immediately leave websites after

only 2 seconds of unresponsiveness. There has been a rapid growth of complex

1



1.3 Topology simplification for rendering performance 1 INTRODUCTION

applications running in web-browsers [source]. These so called progressive web apps

(PWA) combine the fast reachability of web pages with the feature richness of locally

installed applications. Even though these applications can grow quire complex, the

requirement for fast page loads and short time to user interaction still remains. One

way to cope this need is the use of compression algorithms to reduce the amount of

data transmitted and processed. Compression can be lossless. This is often used for

the purpose of data transmission. Web servers use lossless compression algorithms

like gzip to deflate data. Browsers that implement these algorithms can then fully

restore the requested ressources resulting in lower bandwidth usage. Another form of

compression removes information of the data in a way that cannot be restored. This

is called lossy compression. The most common usage on the web is the compression

of image data.

1.3 Topology simplification for rendering performance

While compression is often used to minimize bandwidth usage the compression of

geospatial data can particulary influence rendering performance. The bottleneck

for rendering often is the svg transformation used to display topology on the web

[source]. Implementing simplification algorithms for use on the web platform can

lead to smoother user experience when working with large geodata sets.

1.4 Structure of this thesis

This thesis is structured into a theoretical and a practical component. First the

theoretical principles will be reviewed. Topology of polygonal data will be explained

as how to store geodata. Also the fundamentals of LineString simplification will be

covered.

Then a number of algorithms will be introduced. In this section the each algorithm

will be dissected by complexity, characteristics and the possible influence to the

heuristics mentioned above.

In the fourth chapter the practical implementation will be presented. This section

will dig deeper in several topics important to web development. Such as single page

applications, WebAssembly and how web workers will be used for asynchronous

execution. The developed application will aim to implement modern best practices

in web development such fast time to first user interaction and deferred loading of

modules.

The fifth chapter explains how performance will be measured in the web application.

After presenting the results the concluion chapter will finish the thesis.

2



2 PRINCIPLES

2 Principles

2.1 Polygon basics

2.1.1 Topological aspects

2.2 LineString simplification

2.2.1 Positional errors

2.2.2 Length errors

2.2.3 Area Errors

2.3 Runtimes on the Web
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2.4 Coordinate representation

in Javascript
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2.5 Data Formats

2.6 GeoJSON

2.7 TopoJSON

3



3 ALGORITHMS

3 Algorithms

Compression algorithms.

3.1 n-th point algorithm
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3.5 Reumann-Witkam simplification

3.6 Opheim simplification
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4 WEBASSEMBLY

4 Running the algorithms on the web platform

4.1 Introduction to Webassembly

Present WebAssembly

4.1.1 Existing compilers

Languages from which to compile

emscripten

assemblyscript

rust

4.1.2 Technical hurdles

Managing memory

passing arrays

4.1.3 Benefits of WebAssembly

Why are people going through the hassle of bringing machine code to a platform

with a working scripting engine. Is javascript really that aweful. It is often stated

that WebAssembly can bring performance benefits. It makes sense that statically

typed machine code beats scripting languages performance wise. It has to be ob-

served however if the overhead of switching contexts will neglect this performance

gain. Javascript has made a lot of performance improvements over the past years.

Not at least Googles development on the V8 engine has brought Javascript to an

acceptable speed for extensive calculations. The engine observes the execution of

running javascript code and will perform optimizations that can be compared to

optimizations of compilers.

Get chart and source of js performance

Source for V8 performance observation

The javascript ecosystem has rapidly evolved the past years. Thanks to package

managers like bower, npm and yarn it is super simple to pull code from external

sources into ones codebase. In course of this growth many algorithms and implemen-

tations have been ported to javascript for use on the web. After all it is however not

more then that. A port splits communities and contradicts the DRY principle. With

WebAssembly existing work of many programmers can be reused as is for usage on

the web. This is the second benefit proposed by the technology. Whole libraries

5



4.2 Two test cases - performance and integration 4 WEBASSEMBLY

exclusive for native development could be imported by a few simple tweaks. Codecs

not supported by browsers can be made available for use in any browser supporting

WebAssembly. One example could be the promising AV1 codec

more about av1

To summarize the two main benefits that are expected from WebAssembly are per-

fomance and integration. In this thesis these two benefits will be tested.

4.2 Two test cases - performance and integration

The benefits that WebAssembly promises shall be tested in two seperate Webpages.

One for the performance measurements and one to test the integration of existing

libraries.

Performance As it is the most applicated algorithm the Douglas-Peucker algo-

rithm will be used for measuring performance. A Javascript implementation is

quickly found. simplifyJS. It is the package used by Turf, the most used for geospa-

tial calculations. To produce comparable results the implementation will be based

on this package. Since WebAssembly defines a compilation goal several languages

can be used for this test.
source for simplify JS

source for turf

Integration An existing implementation of several simplification algorithms has

found in the C++ ecosystem. psimpl implements x algorithms distributed as a

single header file. It also provides a function for measuring positional errors making

it ideal for use in a quality analysis tool for those algorithms.

6



5 BENCHMARK

5 Implementation of a performance benchmark

In this chapter I will explain the approach to improve the performance of a simpli-

fication algorithm in a web browser via WebAssembly. The go-to library for this

kind of operation is Simplify.js. It is the JavaScript implementation of the Douglas-

Peucker algorithm with optional radial distance preprocessing. The library will be

rebuilt in the C programming language and compiled to WebAssembly with Em-

scripten. A web page is built to produce benchmarking insights to compare the two

approaches performance wise.

5.1 State of the art: Simplify.js

Simplify.js calls itself a ”tiny high-performance JavaScript polyline simplification li-

brary”1. It was extracted from Leaflet, the ”leading open-source JavaScript library

for mobile-friendly interactive maps”2. Due to its usage in leaflet and Turf.js, a

geospatial analysis library, it is the most common used library for polyline simpli-

fication. The library itself currently has 20,066 weekly downloads while the Turf.js

derivate @turf/simplify has 30,389. Turf.js maintains an unmodified fork of the

library in its own repository. So num-

bers can

be added

leaflet

down-

loads

The Douglas-Peucker algorithm is implemented with an optional radial distance

preprocessing routine. This preprocessing trades performance for quality. Thus the

mode for disabling this routine is called highest quality.

Interestingly the library expects coordinates to be a list of object with x and y

properties. GeoJSON and TopoJSON however store coordinates in nested array

reference

object

vs array

form

form. Luckily since the library is small and written in JavaScript any skilled web

developer can easily fork and modify the code for his own purpose. This is even

pointed out in the source code. The fact that Turf.js, which can be seen as a

convenience wrapper for processing GeoJSON data, decided to keep the library as

is might indicate some benefit to this format. Listing 1 shows how Turf.js calls

Simplify.js. Instead of altering the source code the data is transformed back and

forth between the formats on each call. It is questionable if this practice is advisable

at all.

Since it is not clear which case is faster, and given how simple the required changes

are, two versions of Simplify.js will be tested. The original version, which expects the

coordinates to be in array-of-objects format and the altered version, which operates

on nested arrays. Listing 2 shows an extract of the changes performed on the library.

Instead of using properties, the coordinate values are accessed by index. Except for

1https://mourner.github.io/simplify-js/
2https://leafletjs.com/

7



5.2 The webassembly solution 5 BENCHMARK

1 function simplifyLine(coordinates , tolerance , highQuality) {

2 return simplifyJS(coordinates.map(function (coord) {

3 return {x: coord [0], y: coord[1], z: coord [2]};

4 }), tolerance , highQuality).map(function (coords) {

5 return (coords.z) ? [coords.x, coords.y, coords.z] : [

coords.x, coords.y];

6 });

7 }

Listing 1: Turf.js usage of simplify.js

the removal of the licensing header the alterations are restricted to these kind of

changes. The full list of changes can be viewed in lib/simplify-js-alternative/

simplify.diff.

1 13,14c4 ,5

2 < var dx = p1.x - p2.x,

3 < dy = p1.y - p2.y;

4 ---

5 > var dx = p1[0] - p2[0],

6 > dy = p1[1] - p2[1];

Listing 2: Snippet of the difference between the original Simplify.js and alternative

5.2 The webassembly solution

In scope of this thesis a library will be created that implements the same procedure

as Simplify.JS in C code. It will be made available on the web platform through

WebAssembly. In the style of the model library it will be called Simplify.wasm.

The compiler to use will be Emscripten as it is the standard for porting C code to

WebAssembly.

As mentioned the first step is to port simplify.JS to the C programming language.

The file lib/simplify-wasm/simplify.c shows the attempt. It is kept as close to

the JavaScript library as possible. This may result in C-untypical coding style but

prevents skewed results from unexpected optimizations to the procedure itself. The

entry point is not the main-function but a function called simplify. This is specified

to the compiler as can be seen in listing 3. More

about

the com-

piler call

Furthermore the functions malloc and free from the standard library are made avail-

able for the host environment. Compiling the code through Emscripten produces a

binary file in wasm format and the glue code as JavaScript. These files are called

simplify.wasm and simplify.js respectively.

An example usage can be seen in lib/simplify-wasm/example.html. Even through

8



5.2 The webassembly solution 5 BENCHMARK

1 OPTIMIZE="-O3"

2
3 simplify.wasm simplify.js: simplify.c

4 emcc \

5 ${OPTIMIZE} \

6 --closure 1 \

7 -s WASM=1 \

8 -s ALLOW_MEMORY_GROWTH =1 \

9 -s MODULARIZE =1 \

10 -s EXPORT_ES6 =1 \

11 -s EXPORTED_FUNCTIONS=’[" _simplify", "_malloc", "_free"]’ \

12 -o simplify.js \

13 simplify.c

Listing 3: The compiler call

the memory access is abstracted in this example the process is still unhandy and far

from a drop-in replacement of Simplify.js. Thus in lib/simplify-wasm/index.js

a further abstraction to the Emscripten emitted code was written. The exported

function simplifyWasm handles module instantiation, memory access and the cor-

rect call to the exported wasm function. Finding the correct path to the wasm

binary is not always clear however when the code is imported from another loca-

tion. The proposed solution is to leave the resolving of the code-path to an asset

bundler that processes the file in a preprocessing step.

1 export async function simplifyWasm(coords , tolerance ,

highestQuality) {

2 const module = await getModule ()

3 const buffer = storeCoords(module , coords)

4 const resultInfo = module._simplify(

5 buffer ,

6 coords.length * 2,

7 tolerance ,

8 highestQuality

9 )

10 module._free(buffer)

11 return loadResultAndFreeMemory(module , resultInfo)

12 }

../lib/simplify–wasm/index.js

Listing 5.2 shows the function simplifyWasm. Further explanaition will follow re-

garding the abstractions getModule, storeCoords and loadResultAndFreeMemory.

Module instantiation will be done on the first call only but requires the function

to be asynchronous. For a neater experience in handling Emscripten modules a

9



5.2 The webassembly solution 5 BENCHMARK

utility function named initEmscripten3 was written to turn the module factory

into a JavaScript Promise that resolves on finished compilation. The usage of this

function can be seen in listing 4. The resulting WebAssembly module is cached in

the variable emscriptenModule.

1 let emscriptenModule

2 export async function getModule () {

3 if (! emscriptenModule)

4 emscriptenModule = initEmscriptenModule(wasmModuleFactory ,

wasmUrl)

5 return await emscriptenModule

6 }

Listing 4: My Caption

Storing coordinates into the module memory is done in the function storeCoords.

Emscripten offers multiple views on the module memory. These correspond to the

available WebAssembly data types (e.g. HEAP8, HEAPU8, HEAPF32, HEAPF64,

...)4. As Javascript numbers are always represented as a double-precision 64-bit

binary5 (IEEE 754-2008) the HEAP64-view is the way to go to not lose precision.

Accordingly the datatype double is used in C to work with the data. Listing 5

shows the transfer of coordinates into the module memory. In line 3 the memory is

allocated using the exported malloc-function. A JavaScript TypedArray is used for

accessing the buffer such that the loop for storing the values (lines 5 - 8) is trivial.

1 export function storeCoords(module , coords) {

2 const flatSize = coords.length * 2

3 const offset = module._malloc(flatSize * Float64Array.

BYTES_PER_ELEMENT)

4 const heapView = new Float64Array(module.HEAPF64.buffer , offset ,

flatSize)

5 for (let i = 0; i < coords.length; i++) {

6 heapView [2 * i] = coords[i][0]

7 heapView [2 * i + 1] = coords[i][1]

8 }

9 return offset

10 }

Listing 5: The storeCoords function

Check

for co-

ords

length

¡ 2

3/lib/wasm-util/initEmscripten.js
4https://emscripten.org/docs/api_reference/preamble.js.html#

type-accessors-for-the-memory-model
5https://www.ecma-international.org/ecma-262/6.0/#sec-4.3.20

10



5.2 The webassembly solution 5 BENCHMARK

To read the result back from memory we have to look at how the simplification

will be returned in the C code. Listing 6 shows the entry point for the C code. This

is the function that gets called from JavaScript. As expected arrays are represented

as pointers with corresponding length. The first block of code (line 2 - 6) is only

meant for declaring needed variables. Lines 8 to 12 mark the radial distance pre-

processing. The result of this simplification is stored in an auxiliary array named

resultRdDistance. In this case points will have to point to the new array and the

length is adjusted. Finally the Douglas-Peucker procedure is invoked after reserving

enough memory. The auxiliary array can be freed afterwards. The problem now is

to return the result pointer and the array length back to the calling code. The fact Fact

check.

evtl un-

signed

that pointers in Emscripten are represented by an integer will be exploited to return

a fixed size array of two containing the values. A hacky solution but it works. We

can now look back at how the JavaScript code reads the result.

1 int* simplify(double * points , int length , double tolerance , int

highestQuality) {

2 double sqTolerance = tolerance * tolerance;

3 double* resultRdDistance = NULL;

4 double* result = NULL;

5 int resultLength;

6
7 if (! highestQuality) {

8 resultRdDistance = malloc(length * sizeof(double));

9 length = simplifyRadialDist(points , length , sqTolerance ,

resultRdDistance);

10 points = resultRdDistance;

11 }

12
13 result = malloc(length * sizeof(double));

14 resultLength = simplifyDouglasPeucker(points , length ,

sqTolerance , result);

15 free(resultRdDistance);

16
17 int* resultInfo = malloc (2);

18 resultInfo [0] = (int) result;

19 resultInfo [1] = resultLength;

20 return resultInfo;

21 }

Listing 6: Entrypoint in the C-file

Listing 7 shows the code to read the values back from module memory. The result

pointer and its length are acquired by dereferencing the resultInfo-array. The

buffer to use is the heap for unsigned 32-bit integers. This information can then be

used to align the Float64Array-view on the 64-bit heap. Constructing the appro-

priate coordinate representation by reversing the flattening can be looked up in the

same file. It is realised in the unflattenCoords function. At last it is important

11



5.3 The implementation of a web framework 5 BENCHMARK

to actually free the memory reserved for both the result and the result-information.

The exported method free is the way to go here.

1 export function loadResultAndFreeMemory(module , resultInfo) {

2 const [resultPointer , resultLength] = new Uint32Array(

3 module.HEAPU32.buffer ,

4 resultInfo ,

5 2

6 )

7 const simplified = new Float64Array(

8 module.HEAPF64.buffer ,

9 resultPointer ,

10 resultLength

11 )

12 const coords = unflattenCoords(simplified)

13 module._free(resultInfo)

14 module._free(resultPointer)

15 return coords

Listing 7: Loading coordinates back from module memory

5.3 The implementation of a web framework

The performance comparison of the two methods will be realized in a web page.

It will be a built as a front-end web-application that allows the user to specify

the input parameters of the benchmark. These parameters are: The polyline to

simplify, a range of tolerances to use for simplification and if the so called high

quality mode shall be used. By building this application it will be possible to test a

variety of use cases on multiple devices. Also the behavior of the algorithms can be

researched under different preconditions. In the scope of this thesis a few cases will

be investigated. The application structure will now be introduced.

5.3.1 External libraries

The dynamic aspects of the web page will be built in JavaScript to make it run in

the browser. Webpack6 will be used to bundle the application code and use compil-

ers like babel7 on the source code. As mentioned in section 5.2 the bundler is also

useful for handling references to the WebAssembly binary as it resolves the filename

to the correct download path to use. There will be intentionally no transpiling of

the JavaScript code to older versions of the ECMA standard. This is often done

to increase compatibility with older browsers. Luckily this is not a requirement in

this case and by refraining from this practice there will also be no unintentional

6https://webpack.js.org/
7https://babeljs.io/

12



5.3 The implementation of a web framework 5 BENCHMARK

impact on the application performance. Libraries in use are Benchmark.js8 for sta-

tistically significant benchmarking results, React9 for the building the user interface

and Chart.js10 for drawing graphs.

5.3.2 The framework

The web page consist of static and dynamic content. The static parts refer to the

header and footer with explanation about the project. Those are written directly

into the root HTML document. The dynamic parts are injected by JavaScript.

Those will be further discussed in this chapter as they are the main application

logic.

Figure 1: UML diagram of the benchmarking application

The web app is built to test a variety of cases with multiple datapoints. As men-

tioned Benchmark.js will be used for statistically significant results. It is however

8https://benchmarkjs.com/
9https://reactjs.org/

10https://www.chartjs.org/

13



5.3 The implementation of a web framework 5 BENCHMARK

rather slow as it needs about 5 to 6 seconds per datapoint. This is why multiple

types of benchmarking methods are implemented. Figure 5.3.2 shows the corre-

sponding UML diagram of the application. One can see the UI components in the

top-left corner. The root component is App. It gathers all the internal state of its

children and passes state down where it is needed.

In the upper right corner the different Use-Cases are listed. These cases implement

a function "fn" to benchmark. Additional methods for setting up the function and

clean up afterwards can be implemented as given by the parent class BenchmarkCase.

Concrete cases can be created by instantiating one of the BenchmarkCases with a

defined set of parameters. There are three charts that will be rendered using a

subset of these cases. These are:

• Simplify.js vs Simplify.wasm - This Chart shows the performance of the

simplification by Simplify.js, the altered version of Simplify.js and the newly

developed Simplify.wasm. Cases

• Simplify.wasm runtime analysis - To further gain insights to WebAssem-

bly performance this stacked barchart shows the runtime of a call to Sim-

plify.wasm. It is partitioned into time spent for preparing data (storeCords),

the algorithm itself and the time it took for the coordinates being restored

from memory (loadResult).

• Turf.js method runtime analysis - The last chart will use a similar struc-

ture. This time it analyses the performance impact of the back and forth

transformation of data used in Truf.js. Cases

On the bottom the different types of Benchmarks implemented can be seen. They all

implement the abstract measure function to return the mean time to run a function

specified in the given BenchmarkCase. The IterationsBenchmark runs the function

a specified number of times, while the OpsPerTimeBenchmark always runs a certain

amount of milliseconds to tun as much iterations as possible. Both methods got

their benefits and drawbacks. Using the iterations approach one cannot determine

the time the benchmark runs beforehand. With fast devices and a small number of

iterations one can even fall in the trap of the duration falling under the accuracy

of the timer used. Those results would be unusable of course. It is however a very

fast way of determining the speed of a function. And it holds valuable for getting a

first approximation of how the algorithms perform over the span of datapoints. The

second type, the operations per time benchmark, seems to overcome this problem. It

is however prune to garbage collection, engine optimizations and other background
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processes. 11

Benchmark.js combines these approaches. In a first step it approximates the runtime

in a few cycles. From this value it calculates the number of iterations to reach an

uncertainty of at most 1%. Then the samples are gathered. more

12

BenchmarkType

BenchmarkSuite

5.3.3 The user interface

11https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
12http://monsur.hossa.in/2012/12/11/benchmarkjs.html
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6 Compiling an existing C++ library for use on

the web

In this chapter I will explain how an existing C++ library was utilized compare

different simplification algorithms in a web browser. The library is named psimpl

and was written in 2011 from Elmar de Koning. It implements various Algorithms

used for polyline simplification. This library will be compiled to WebAssembly us-

ing the Emscripten compiler. Furthermore a Web-Application will be created for

interactively exploring the Algorithms. The main case of application is simplify-

ing polygons, but also polylines will be supported. The data format used to read

in the data will be GeoJSON. To maintain topological correctness a intermediate

conversion to TopoJSON will be applied if requested.

6.1 State of the art: psimpl

psimpl is a generic C++ library for various polyline simplification algorithms. It

consists of a single header file psimpl.h. The algorithms implemented are Nth

point, distance between points, perpendicular distance, Reumann-Witkam, Opheim,

Lang, Douglas-Peucker and Douglas-Peucker variation. It has to be noted, that

the Douglas-Peucker implementation uses the distance between points routine, also

named the radial distance routine, as preprocessing step just like Simplify.js (Section

5.1). All these algorithms have a similar templated interface. The goal now is to

prepare the library for a compiler.

Describe the error statistics function of psimpl

6.2 Compiling to WebAssembly

As in the previous chapter the compiler created by the Emscripten project will be

used. This time the code is not directly meant to be consumed by a web application.

It is a generic library. There are no entry points defined that Emscripten can export

in WebAssembly. So the entry points will be defined in a new package named

psimpl-js. It will contain a C++ file that uses the library, the compiled code and

the JavaScript files needed for consumption in a JavaScript project. psimpl makes

heavy use of C++ template functions which cannot be handled by JavaScript. So

there will be entry points written for each exported algorithm. These entry points

are the point of intersection between JavaScript and the library. Listing 8 shows one

example. They all follow the same procedure. First the pointer given by JavaScript

is interpreted as a double-pointer in line 2. This is the beginning of the coordinates
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array. psimpl expects the first and last point of an iterator so the pointer to the

last point is calculated (line 3). The appropriate function template from psimpl is

instantiated and called with the other given parameters (line 5). The result is stored

in an intermediate vector.

1 val douglas_peucker(uintptr_t ptr , int length , double tol) {

2 double* begin = reinterpret_cast <double*>(ptr);

3 double* end = begin + length;

4 std::vector <double > resultCoords;

5 psimpl :: simplify_douglas_peucker <2>(begin , end , tol , std::

back_inserter(resultCoords));

6 return val(typed_memory_view(resultCoords.size(), &resultCoords

[0]));

7 }

Listing 8: One entrypoint to the C++ code

Since this is C++ the the capabilities of Emscripten’s Embind can be utilized.

Embind is realized in the libraries bind.h13 and val.h14. val.h is used for translit-

erating JavaScript to C++. In this case it is used for the type conversion of C++

Vectors to JavaScript’s Typed Arrays as seen at the end of listing 8. On the other

hand bind.h is used for for binding C++ functions, classes, or enumerations to

from JavaScript callable names. Aside from providing a better developer experience

this also prevents name mangling in cases where functions are overloaded. Instead

of listing the exported functions in the compiler command or annotating it with

EMSCRIPTEN KEEPALIVE the developer gives a pointer to the object to bind. Listing

9 shows each entry point bound to a readable name and at last the registered vec-

tor datatype. The parameter my module is merely for marking a group of related

bindings to avoid name conflicts in bigger projects.

1 EMSCRIPTEN_BINDINGS(my_module) {

2 function("nth_point", &nth_point);

3 function("radial_distance", &radial_distance);

4 function("perpendicular_distance", &perpendicular_distance);

5 function("reumann_witkam", &reumann_witkam);

6 function("opheim", &opheim);

7 function("lang", &lang);

8 function("douglas_peucker", &douglas_peucker);

9 function("douglas_peucker_n", &douglas_peucker_n);

10 register_vector <double >("vector <double >");

11 }

Listing 9: Emscripten bindings

13https://emscripten.org/docs/api_reference/bind.h.html#bind-h
14https://emscripten.org/docs/api_reference/val.h.html#val-h

17



6.3 The implementation 6 ALGORITHM COMPARISON

Compiler call (–bind)

The library code on JavaScript side is similar to the one in chapter 5.2. This time

a function is exported per routine.

More about javascript glue code with listing callSimplification.

6.3 The implementation

The implementation is just as in the last chapter a web page and thus JavaScript

is used for the interaction. The source code is bundled with Webpack. React

is the UI Component library and babel is used to transform JSX to JavaScript.

MobX15 is introduced as a state management library. It applies functional reactive

programming by giving the utility to declare observable variables and triggering

the update of derived state and other observers intelligently. To do that MobX

observes the usage of observable variables so that only dependent observers react

on updates. In contrast to other state libraries MobX does not require the state to

be serializable. Many existing data structures can be observed like objects, arrays

and class instances. It also does not constrain the state to a single centralized store

like Redux16 does. The final state diagram can be seen in listing 2. It represents

the application state in an object model. Since this has drawbacks in showing the

information flow the observable variables are marked in red, and computed ones in

blue.

On the bottom the three main state objects can be seen. They are implemented

as singletons as they represent global application state. Each of them will now be

explained.

MapState holds state relevant for the map display. An array of TileLayers de-

fines all possible background layers to choose from. The selected one is stored in

selectedTileLayerId. The other two variables toggle the display of the vector

layers to show.

AlgorithmState stores all the information about the simplification algorithms to

choose from. The class Algorithm acts as a generalization interface. Each algorithm

defines which fields are used to interact with its parameters. These fields hold their

current value, so the algorithm can compute its parameters array at any time. The

fields also define additional restrictions in their props attribute like the number

range from which to choose from. An integer field for example, like the n value

15https://mobx.js.org/
16https://redux.js.org/
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Figure 2: The state model of the application

in the Nth point algorithm, would instantiate a range field with a step value of

one. The ToleranceRange however, which is modeled as its own subclass due to its

frequent usage, allows for smaller steps to represent decimal numbers.

FeatureState encapsulates the state of the vector features. Each layer is repre-

sented in text form and object format of the GeoJSON standard. The text form is

needed as a serializable form for detecting whether the map display needs to update

on an action. As the original features come from file or the server, the text represen-

tation is the source of truth and the object format derives from it. The simplified

features are asynchronously calculated. This process is outsourced to a debounced

reaction that updates the state upon finish.

6.4 The user interface

After explaining the state model the User Interface (UI) shall be explained. The

interface is implemented in components which are modeled in a shallow hierarchy.

They represent and update the application state. In listing 3 the resulting web page

is shown. The labeled regions correspond to the components. Their behavior will
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be explained in the following. Insert

final pic-

ture.

Red

boxes

around

regions

Make ui

fit de-

scription

Figure 3: The user interface for the algorithm comparison.

Leaflet Map The big region on the left marks the Leaflet map. Its main use is

the visualization of Features. The layers to show are one background tile layer, the

original and the simplified features. Original marks the user specified input features

for simplification. These are marked in blue with a thin border. The simplified

features are laid on top in a red styling. Aside from the default control for zooming

on the top left the map contains a info widget showing the length of the currently

specified tolerance on the top right.

Background Layers Control The first component in the Options panel is a

simple radio button group for choosing the background layer of the map or none
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at all. They are provided by the OpenStreetMap (OSM) foundation17. By expe-

rience the layer ”OpenStreetMap DE” provides better loading times in Germany.

”OpenStreetMap Mapnik” is considered the standard OSM tile layer18.

Data Selection Here the input layer can be specified. Either by choosing one of

the prepared data sets or by selecting a locally stored GeoJSON file. The prepared

data will be loaded from the server upon selection by an Ajax call. Ajax stands

for asynchronous JavaScript and XML and describes the method of dispatching an

HTTP request from the web application without reloading the page. This way

not all of the data has to be loaded on initial page load. On the other hand the

user can select a file with an HTML input or via drag & drop. For the latter the

external package ”file-drop-element” is used19. It is a custom element based on the

rather recent Custom Elements specification20. It allows the creation of new HTML

elements. In this case it is an element called ”file-drop” that encapsulates the drag

& drop logic and provides a simple interface using attributes and events. Listing 10

shows the use of the element. The mime type is restricted by the accept attribute

to GeoJSON files.

1 <file -drop accept="application/geo+json">Drop area</file -drop>

Listing 10: The file-drop element in use

Layer Control This element serves the purpose of toggling the display of the vec-

tor layers. The original and the simplified features can be independently displayed

or be hidden. If features have been loaded, the filename will be shown here.

Simplification Control The last element in this section is the control for the

simplification parameters. At first the user can choose if a conversion to TopoJSON

should be performed before simplification. Then the algorithm itself can be selected.

The parameters change to fit the requirements of the algorithm. The update of one

of the parameters trigger live changes in the application state so the user can get

direct feedback how the changes affect the geometries.

17https://wiki.osmfoundation.org/wiki/Main_Page
18https://wiki.openstreetmap.org/wiki/Featured_tile_layers
19https://github.com/GoogleChromeLabs/file-drop#readme
20https://w3c.github.io/webcomponents/spec/custom/
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6.5 Benchmark results

6.6 Comparing the results of different algorithms
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7 Conclusion

Enhancement: Line Smoothing as preprocessing step
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