
Performance comparison of simplification
algorithms for polygons in the context of web

applications

Masterarbeit

Institut für Informatik

Universität Augsburg

vorgelegt von

Alfred Melch

Matrikelnummer xxx

Augsburg, August 2019

1. Gutachter: Prof. Dr. Jörg Hähner

2. Gutachter: Prof. Dr. Sabine Timpf

Betreuer: Prof. Dr. Jörg Hähner

Abstract

Abstract goes here

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Binary instruction sets on the web platform 1

1.2 Performance as important factor for web applications 1

1.3 Topology simplification for rendering performance 2

1.4 Related work . 2

1.5 Structure of this thesis . 2

2 Theory 4

2.1 Generalization in cartography . 4

2.2 Polyline simplification . 4

2.2.1 Summary . 7

2.3 Geodata formats on the Web . 7

2.4 Web runtimes . 10

2.4.1 Introduction to Webassembly . 10

3 Methodology 14

3.1 State of the art: Simplify.js . 14

3.2 The webassembly solution . 15

3.3 File sizes . 19

3.4 The implementation of a web framework 20

3.4.1 External libraries . 21

3.4.2 The application logic . 21

3.4.3 Benchmark cases and chart types 21

3.4.4 The different benchmark types . 23

3.4.5 The benchmark suite . 23

3.4.6 The user interface . 23

3.5 The test data . 26

4 Results 28

4.1 Case 1 - WebAssembly vs JavaScript in different browsers 28

4.2 Case 2 - Simplify.wasm runtime analysis 32

4.3 Case 3 - Benchmarking Safari on MacOS 34

4.4 Case 4 - Measuring the Turf.js method . 36

4.5 Case 5 - Mobile benchmarking . 39

CONTENTS CONTENTS

5 Discussion 42

5.1 Browser differences for the JavaScript implementations 42

5.2 Browser differences for Simplify.wasm . 43

5.3 Insights into Simplify.wasm . 43

5.4 Comparison Simplify.wasm vs Simplify.js 44

5.5 Analysis of Turf.js implementation . 44

5.6 Mobile device analysis . 44

6 Conclusion 45

6.1 Enhancements . 45

6.2 Future Work . 45

1 INTRODUCTION

1 Introduction

Simplification of polygonal data structures is the task of reducing data points while pre-

serving topological characteristics. The simplification often takes the form of removing

points that make up the geometry. There are several solutions that tackle the problem

in different ways. With the rising trend of moving desktop applications to the web plat-

form also geographic information systems (GIS) have experienced the shift towards web

browsers 1. Performance is critical in these applications. Since simplification is an impor-

tant factor to performance the solutions will be tested by constructing a web application

using a technology called WebAssembly.

1.1 Binary instruction sets on the web platform

The recent development of WebAssembly allows code written in various programming

languages to be run natively in web browsers. So far JavaScript was the only native

programming language on the web. The goals of WebAssembly are to define a binary

instruction format as a compilation target to execute code at native speed and taking

advantage of common hardware capabilities (Haas et al. 2017). The integration into the

web platform brings portability to a wide range of platforms like mobile and internet

of things (IoT). The usage of this technology promises performance gains that will be

tested by this thesis. The results can give conclusions to whether WebAssembly is worth

a consideration for web applications with geographic computational aspects. Web GIS

is an example technology that would benefit greatly of such an advancement. Thus far

WebAssembly has been shipped to the stable version of the four most used browser engines

(Wagner 2017). The mainly targeted high-level languages for compilation are C and C++.

Also a compiler for Rust and a TypeScript subset has been developed.

1.2 Performance as important factor for web applications

There has been a rapid growth of complex applications running in web-browsers. These

so called progressive web apps (PWA) combine the fast reachability of web pages with

the feature richness of locally installed applications. Even though these applications can

grow quire complex, the requirement for fast page loads and instant user interaction still

remains. One way to cope this need is the use of compression algorithms to reduce the

amount of data transmitted and processed. In a way simplification is a form of data

compression. Web servers use lossless compression algorithms like gzip to deflate data

1https://www.esri.com/about/newsroom/arcnews/implementing-web-gis/

1

https://www.esri.com/about/newsroom/arcnews/implementing-web-gis/

1.3 Topology simplification for rendering performance 1 INTRODUCTION

before transmission. Browsers that implement these algorithms can then fully restore the

requested ressources resulting in lower bandwidth usage. The algorithms presented here

however remove information from the data in a way that cannot be restored. This is

called lossy compression. The most common usage for this on the web is the compression

of image data.

1.3 Topology simplification for rendering performance

While compression is often used to minimize bandwidth usage the compression of geospa-

tial data can particulary influence rendering performance. The bottleneck for rendering

often is the svg transformation used to display topology on the web. Implementing sim-

plification algorithms for use on the web platform can lead to smoother user experience

when working with large geodata sets.

1.4 Related work

There have been previous attempts to speed up applications with WebAssembly. They

all have seen great performance benefits when using this technology. Results show that

over several source languages the performance is predictably consistent across browsers

(Surma 2019). Reiser and Bläser even propose to cross-compile JavaScript to WebAssem-

bly. Through their developed library Speedy.js one can compile TypeScript, a JavaScript

superset, to WebAssembly. The performance gains of critical functions reaches up to a

factor of four (Reiser and Bläser 2017).

Shi and Cheung analyzed several different polyline simplification algorithms in 2006

regarding their performance and quality (Shi and Cheung 2006). In this thesis the algo-

rithms will also be introduced. The performance benchmarking however will be limited

to only the most effective algorithm that is used on the web.

1.5 Structure of this thesis

This thesis is structured into a theoretical and a practical component. First the theo-

retical principles will be reviewed. A number of algorithms will be introduced in this

section. Each algorithm will be dissected by complexity and characteristics. Topology of

polygonal data will be explained as how to describe geodata on the web. An introduction

to WebAssembly will follow.

In the next chapter the practical implementation will be presented. A web application

will be developed to measure the performance of three related algorithms used for polyline

simplification.

2

1.5 Structure of this thesis 1 INTRODUCTION

The results of the above methods will be shown in chapter 4. After discussion of the

results a conclusion will finish the thesis.

3

2 THEORY

2 Theory

In this chapter the theory behind polygon simplification will be explained. The simpli-

fication process is part of generalization in cartography. It will be clarified which goals

drive the reducing of data quantity, especially in the context of web applications. Then

several different simplification algorithms will be introduced. The leading data formats

that represent geodata on the web will be explained. From there a closer look can be taken

how the algorithms run on the web platform. For that the technology WebAssembly will

be presented.

2.1 Generalization in cartography

In map generalization one aims to reduce the data presented appropriate to the scale

and/or purpose of the map (Brophy 1973). This selection has been a manual process

for a long time, such that geographic generalization has been developed into an art that

can only be learned by years of apprenticeship and practice (Brassel 1990). When using

automation one could be concerned about a lower quality of maps. This is why many talk

about computer assisted generalization where only subprocesses can be fully automated.

Polyline simplification is the most basic topic in map generalization (Ai et al. 2017).

The problems of geographic cartography also apply here. So a number of algorithms have

been developed to describe the work of cartographers as abstract, computer automatable

processes. A selection of these algorithms will be explained in chapter 2.2.

Cartography does not halt before digitalization. In the era of big data there is a

large volume of map data available. Many come from collaborative projects like Open-

StreetMap2 (OSM) where volunteers submit freely available geographic information. To

deliver this mass of data over the internet one can make use of the simplification pro-

cesses described in this thesis. This is particularly useful as the information provided has

usually no scale description. Automated simplification can bring appropriate data sizes

while maintaining data usability (Ai et al. 2017).

2.2 Polyline simplification

In this chapter several algorithms for polyline simplification will be explained. For each

algorithm a short summary of the routine will be given. At the end a comparison will be

drawn to determine the method in use for benchmarking.

2https://www.openstreetmap.org/

4

https://www.openstreetmap.org/

2.2 Polyline simplification 2 THEORY

n-th point algorithm This algorithm is fairly simplistic. It was described in 1966 by

Tobler. The routine is to select every n-th coordinate of the polyline to retain. The larger

the value of n is, the greater the simplification will be. (Clayton 1985)

The Random-point routine is derived from the n-th point algorithm. It sections the

line into parts containing n consecutive positions. From each section a random point is

chosen to construct the simplified line. (Shi and Cheung 2006)

Radial distance algorithm Another simple algorithm to reduce points clustered too

closely together. The algorithm will sequentially go through the line and eliminate all

points whose distance to the current key is shorter than a given tolerance limit. As soon

as a point with greater distance is found, it becomes the new key. (Koning 2011)

Perpendicular distance algorithm Again a tolerance limit is given. The measure

to check against is the perpendicular distance of a point to the line connecting its two

neighbors. All points that exceed this limit are retained. (Koning 2011)

Reumann-Witkam simplification As the name implies this algorithm was developed

by Reumann and Witkam. In 1974 they described the routine that constructs a ”corri-

dor/search area” by placing two parallel lines in the direction of its initial tangent. The

distance from this segment is user specified. Then the successive points will be checked

until a point outside of this area is found. Its predecessor becomes a key and the two

points mark the new tangent for the search area. This procedure is repeated until the

last point is reached. (Reumann and Witkam 1974)

Zhao-Saalfeld simplification This routine, also called the sleeve-fitting polyline sim-

plification, developed in 1997 is similar to the Reumann-Witkam algorithm. Its goal is to

fit as many consecutive points in the search area. The corridor is however not aligned to

the initial tangent but rather to the last point in the sequence. From the starting point

on successors get added as long as all in-between points fit in the sleeve. If the constraint

fails a new sleeve will be started from the last point in the previous section. (Zhao and

Saalfeld 1997)

The Opheim simplification Opheim extends the Reumann-Witkam algorithm in 1982

by constraining the search area. To do that two parameters dmin and dmax are given.

From the key point on the last point inside a radial distance search region defined by dmin

is taken to form the direction of the search corridor. If there is no point inside this region

5

2.2 Polyline simplification 2 THEORY

the subsequent point is taken. Then the process from the Reumann-Witkam algorithm is

applied with the corridor constrained to a maximum distance of dmax. (Opheim 1982)

Lang simplification Lang described this algorithm in 1969. The search area is defined

by a specified number of points too look ahead of the key point. A line is constructed

from the key point to the last point in the search area. If the perpendicular distance of all

intermediate points to this line is below a tolerance limit, they will be removed and the

last point is the new key. Otherwise the search area is shrunk by excluding this last point

until the requirement is met or there are no more intermediate points. All the algorithms

before operated on the line sequentially and have a linear time complexity. This one also

operates sequentially, but one of the critics about the Lang algorithm is that it requires

too much computer time (DP). The complexity of this algorithm is O(mn) with m being

the number of positions to look ahead. (Lang 1969)

Douglas-Peucker simplification David H. Douglas and Thomas K. Peucker devel-

oped this algorithm in 1973 as an improvement to the by then predominant Lang algo-

rithm. It is the first global routine described here. A global routine considers the entire

line for the simplification process and comes closest to imitating manual simplification

techniques (Clayton 1985). The algorithm starts with constructing a line between the

first point (anchor) and last point (floating point) of the feature. The perpendicular dis-

tance of all points in between those two is calculated. The intermediate point furthest

away from the line will become the new floating point on the condition that its perpen-

dicular distance is greater than the specified tolerance. Otherwise the line segment is

deemed suitable to represent the whole line. In this case the floating point is considered

the new anchor and the last point will serve as floating point again (DP). The worst

case complexity of this algorithm is O(nm) with O(n logm) being the average complexity

(Koning 2011). The m here is the number of points in the resulting line which is not

known beforehand. (Douglas and Peucker 1973)

Visvalingam-Whyatt simplification This is another global point routine. It was

developed in 1993 (VW). Visvalingam and Wyatt use a area-based method to rank the

points by their significance. To do that the ”effective area” of each point has to be cal-

culated. This is the area the point spans up with its adjoining points (Shi and Cheung

2006). Then the points with the least effective area get iteratively eliminated, and its

neighbors effective area recalculated, until there are only two points left. At each elimina-

tion the point gets stored in a list alongside with its associated area. This is the effective

area of that point or the associated area of the previous point in case the latter one is

6

2.3 Geodata formats on the Web 2 THEORY

higher. This way the algorithm can be used for scale dependent and scale-independent

generalizations. (Visvalingam and Whyatt 1993)

2.2.1 Summary

The algorithms shown here are the most common used simplification algorithms in cartog-

raphy and GIS. The usage of one algorithm stands out however. It is the Douglas-Peucker

algorithm. In Performance Evaluation of Line Simplification Algorithms for Vector Generaliza-

tion Shi and Cheung conclude that ”the Douglas-Peucker algorithm was the most effective

to preserve the shape of the line and the most accurate in terms of position” (Shi and

Cheung 2006). Its complexity however is not ideal for web-based applications. The so-

lution is to preprocess the line with the linear-time radial distance algorithm to reduce

point clusters. This solution will be further discussed in section 3.1.

2.3 Geodata formats on the Web

Here the data formats that are used through this theses will be explained.

The JavaScript Object Notation (JSON) Data Interchange Format was derived

from the ECMAScript Programming Language Standard (Bray 2014). It is a text format

for the serialization of structured data. As a text format it suites well for the data

exchange between server and client. Also it can easily be consumed by JavaScript. These

characteristics are ideal for web based applications. It does however only support a limited

number of data types. Four primitive ones (string, number, boolean and null) and two

structured ones (objects and array). Objects are an unordered collection of name-value

pairs, while arrays are simply ordered lists of values. JSON was meant as a replacement

for XML as it provides a more human readable format. Through nesting complex data

structures can be created.

The GeoJSON Format is a geospatial data interchange format (Butler et al. 2016).

As the name suggests it is based on JSON and deals with data representing geographic

features. There are several geometry types defined to be compatible with the types in the

OpenGIS Simple Features Implementation Specification for SQL (Consortium et al. 1999).

These are Point, MultiPoint, LineString, MultiLineString, Polygon, Multipolygon and

the heterogeneous GeometryCollection. Listing 1 shows a simple example of a GeoJSON

object with one point feature. A more complete example can be viewed in the file data/

example-7946.geojson.

7

2.3 Geodata formats on the Web 2 THEORY

1 {

2 "type": "Feature",

3 "geometry": {

4 "type": "Point",

5 "coordinates": [125.6 , 10.1]

6 },

7 "properties": {

8 "name": "Dinagat Islands"

9 }

10 }

Listing 1: An example for a GeoJSON object

The feature types differ in the format of their coordinates property. A position is

an array of at least two elements representing longitude and latitude. An optional third

element can be added to specify altitude. While the coordinates member of a Point-

feature is simply a single position, a LineString-feature describes its geometry through

an Array of at least two positions. More interesting is the specification for Polygons. It

introduces the concept of the linear ring as a closed LineString with at least four positions

where the first and last positions are equivalent. The Polygon’s coordinates member is

an array of linear rings with the first one representing the exterior ring and all others

interior rings, also named surface and holes respectively. At last the coordinates member

of MultiLineStrings and MultiPolygons is defined as a single array of its singular feature

type.

GeoJSON is mainly used for web-based mapping. Since it is based on JSON it inherits

its strength. There is for one the enhanced readability through reduced markup overhead

compared to XML-based data types like GML. Interoperability with web applications

comes for free since the parsing of JSON-objects is integrated in JavaScript. Unlike the

Esri Shapefile format a single file is sufficient to store and transmit all relevant data,

including feature properties.

To its downsides count that a text based format cannot store the geometries as effi-

ciently as it would be possible with a binary format. Also only vector-based data types can

be represented. Another disadvantage can be the strictly non-topologic approach. Every

feature is completely described by one entry. However when there are features that share

common components, like boundaries in neighboring polygons, these data points will be

encoded twice in the GeoJSON object. On the one hand this further poses concerns about

data size. On the other hand it is more difficult to execute topological analysis on the

data set. Luckily there is a related data structure to tackle this problem.

8

2.3 Geodata formats on the Web 2 THEORY

Figure 1: Topological editing (top) vs. Non-topological editing (bottom) (Theobald 2001)

TopoJSON is an extension of GeoJSON and aims to encode datastructures into a

shared topology (Bostock 2017). It supports the same geometry types as GeoJSON. It

differs in some additional properties to use and new object types like ”Topology” and

”GeometryCollection”. Its main feature is that LineStrings, Polygons and their multi-

plicitary equivalents must define line segments in a common property called ”arcs”. The

geometries themselves then reference the arcs from which they are made up. This reduces

redundancy of data points. Another feature is the quantization of positions. To use it one

can define a ”transform” object which specifies a scale and translate point to encode all

coordinates. Together with delta-encoding of position arrays one obtains integer values

better suited for efficient serialization and reduced file size.

Other than the reduced data duplication topological formats have the benefit of topo-

logical analysis and editing. When modifying adjacent Polygons for example by simpli-

fication one would prefer TopoJSON over GeoJSON. Figure 2.3 shows what this means.

When modifying the boundary of one polygon, one can create gaps or overlaps in non-

topological representations. With a topological data structure however the topology will

preserve. (Theobald 2001)

Coordinate representation Both GeoJSON and TopoJSON represent positions as an

array of numbers. The elements depict longitude, latitude and optionally altitude in that

order. For simplicity this thesis will deal with two-dimensional positions only. A polyline

is described by creating an array of these positions as seen in listing 2.

There will be however one library in this thesis which expects coordinates in a different

format. Listing 3 shows a polyline in the sense of this library. Here one location is

9

2.4 Web runtimes 2 THEORY

1 [[102.0 , 0.0], [103.0 , 1.0], [104.0 , 0.0], [105.0 , 1.0]]

Listing 2: Polyline coordinates in nested-array form

represented by an object with x and y properties.

1 [{x: 102.0, y: 0.0}, {x: 103.0, y: 1.0}, {x: 104.0, y: 0.0}, {x: 105.0,

y: 1.0}]

Listing 3: Polyline in array-of-objects form

To distinguish these formats in future references the first first format will be called

nested-array format, while the latter will be called array-of-objects format.

2.4 Running the algorithms on the web platform

JavaScript has been the only native programming language of web browsers for a long

time. With the development of WebAssembly there seems to be an alternative on its way.

This technology, its benefits and drawbacks, will be explained in this chapter.

2.4.1 Introduction to Webassembly

WebAssembly3 started in April 2015 with an W3C Community Group4 and is designed by

engineers from the four major browser vendors (Mozilla, Google, Apple and Microsoft). It

is a portable low-level bytecode designed as target for compilation of high-level languages.

By being an abstraction over modern hardware it is language-, hardware-, and platform-

independent. It is intended to be run in a stack-based virtual machine. This way it is not

restrained to the Web platform or a JavaScript environment. Some key concepts are the

structuring into modules with exported and imported definitions and the linear memory

model. Memory is represented as a large array of bytes that can be dynamically grown.

Security is ensured by the linear memory being disjoint from code space, the execution

stack and the engine’s data structures. Another feature of WebAssembly is the possibility

of streaming compilation and the parallelization of compilation processes. (Haas et al.

2017)

The goals of WebAssembly have been well defined. It’s semantics are intended to

be safe and fast to execute and bring portability by language-, hardware- and platform-

3https://webassembly.org/
4https://www.w3.org/community/webassembly/

10

https://webassembly.org/
https://www.w3.org/community/webassembly/

2.4 Web runtimes 2 THEORY

independence. Furthermore it should be deterministic and have simple interoperability

with the web platform. For its representation the following goals are declared. It shall

be compact and easy to decode, validate and compile. Parallelization and streamable

compilation are also mentioned. (Haas et al. 2017)

These goals are not specific to WebAssembly. They can be seen as properties that a

low-level compilation target for the web should have. In fact there have been previous

attempts to run low-level code on the web. Examples are Microsoft’s ActiveX, Native

Client (NaCl) and Emscripten each having issues complying with the goals. Java and

Flash are examples for managed runtime plugins. Their usage is declining however not

at least due to falling short on the goals mentioned above. (Haas et al. 2017)

It is often stated that WebAssembly can bring performance benefits. It makes sense

that statically typed machine code beats scripting languages performance wise. It has to

be observed however if the overhead of switching contexts will neglect this performance

gain. JavaScript has made a lot of performance improvements over the past years. Not at

least Googles development on the V8 engine has brought JavaScript to an acceptable speed

for extensive calculations. Modern engines observe the execution of running JavaScript

code and will perform optimizations that can be compared to optimizations of compilers.

(Clark 2017)

The JavaScript ecosystem has rapidly evolved the past years. Thanks to package

managers like bower, npm and yarn it is simple to pull code from external sources into

ones codebase. Initially thought for server sided JavaScript execution the ecosystem has

found its way into front-end development via module bundlers like browserify, webpack

and rollup. In course of this growth many algorithms and implementations have been

ported to JavaScript for use on the web. With WebAssembly this ecosystem can be

broadened even further. By lifting the language barrier existing work of many more

programmers can be reused on the web. Whole libraries exclusive for native development

could be imported by a few simple tweaks. Codecs not supported by browsers can be

made available for use in any browser supporting WebAssembly. (Surma 2018)

The Emscripten toolchain There are various compilers with WebAssembly as compi-

lation target. In this thesis the Emscripten toolchain is used. Other notable compilers are

wasm-pack5 for rust projects and AssemblyScript6 for a TypeScript subset. This latter

compiler is particularly interesting as TypeScript, itself a superset of JavaScript, is a pop-

ular choice among web developers. This reduces the friction for WebAssembly integration

as it is not necessary to learn a new language.

5https://rustwasm.github.io/
6https://github.com/AssemblyScript/assemblyscript

11

https://rustwasm.github.io/
https://github.com/AssemblyScript/assemblyscript

2.4 Web runtimes 2 THEORY

Figure 2: Example code when compiling a C program (left) to asm.js (right) through
LLVM bytecode (middle) without optimizations. (Zakai 2011)

Emscripten7 started with the goal to compile unmodified C and C++ applications

to JavaScript. They did this by acting as a compiler backend to LLVM assembly. High

level languages compile through a frontend into the LLVM intermediate representation.

Well known frontends are Clang and LLVM-GCC. From there it gets passed through a

backend to generate the architecture specific machine code. Emscripten hooks in here

to generate asm.js, a performant JavaScript subset. In figure 2 one such example chain

can be seen. On the left is the original C code which sums up numbers from 1 to 100.

The resulting LLVM assembly can be seen in the middle. It is definitely more verbose,

but easier to work on for the backend compiler. Notable are the allocation instructions,

the labeled code blocks and code flow moves. The JavaScript representation on the right

is the nearly one to one translation of the LLVM assembly. The branching is done via

a switch-in-for loop, memory is implemented by a JavaScript array named HEAP and

LLVM assembly functions calls become normal JavaScript function calls like printf().

Through optimizations the code becomes more compact and only then more performant.

(Zakai 2011)

It is in fact this project that inspired the creation of WebAssembly. It was even called

the ”natural evolution of asm.js”8. As of May 2018 Emscripten changed its default output

7https://webassembly.org/
8https://groups.google.com/forum/#!topic/emscripten-discuss/k-egXO7AkJY/discussion

12

https://webassembly.org/
https://groups.google.com/forum/#!topic/emscripten-discuss/k-egXO7AkJY/discussion

2.4 Web runtimes 2 THEORY

to WebAssembly9 while still supporting asm.js. Currently the default backend named

fastcomp generates the WebAssembly bytecode from asm.js. A new backend however is

about to take its place that compiles directly from LLVM (Zakai 2019).

The compiler is only one part of the Emscripten toolchain. Part of that are various

APIs, for example for file system emulation or network calls, and tools like the compiler

mentioned.

9https://github.com/emscripten-core/emscripten/pull/6419

13

https://github.com/emscripten-core/emscripten/pull/6419

3 METHODOLOGY

3 Implementation of a performance benchmark

In this chapter I will explain the approach to improve the performance of a simplification

algorithm in a web browser via WebAssembly. The go-to library for this kind of operation

is Simplify.js. It is the JavaScript implementation of the Douglas-Peucker algorithm with

optional radial distance preprocessing. The library will be rebuilt in the C programming

language and compiled to WebAssembly with Emscripten. A web page is built to produce

benchmarking insights to compare the two approaches performance wise.

3.1 State of the art: Simplify.js

Simplify.js calls itself a ”tiny high-performance JavaScript polyline simplification library”10.

It was extracted from Leaflet, the ”leading open-source JavaScript library for mobile-

friendly interactive maps”11. Due to its usage in leaflet and Turf.js, a geospatial analysis

library, it is the most common used library for polyline simplification. The library itself

currently has 20,066 weekly downloads on the npm platform while the Turf.js derivate

@turf/simplify has 30,389. Turf.js maintains an unmodified fork of the library in its own

repository. The mentioned mapping library Leaflet is is downloaded 189.228 times a week.

The Douglas-Peucker algorithm is implemented with an optional radial distance pre-

processing routine. This preprocessing trades performance for quality. Thus the mode for

disabling this routine is called highest quality.

Interestingly the library expects coordinates to be a list of object with x and y prop-

erties. GeoJSON and TopoJSON however store coordinates in nested array form (see

chapter 2.3). Luckily since the library is small and written in JavaScript any skilled web

developer can easily fork and modify the code for his own purpose. This is even pointed

out in the library’s source code. The fact that Turf.js, which can be seen as a convenience

wrapper for processing GeoJSON data, decided to keep the library as is might indicate

some benefit to this format. Listing 4 shows how Turf.js calls Simplify.js. Instead of

altering the source code the data is transformed back and forth between the formats on

each call. It is questionable if this practice is advisable at all.

Since it is not clear which case is faster, and given how simple the required changes

are, two versions of Simplify.js will be tested. The original version, which expects the

coordinates to be in array-of-objects format and the altered version, which operates on

nested arrays. Listing 5 shows an extract of the changes performed on the library. Instead

of using properties, the coordinate values are accessed by index. Except for the removal

10https://mourner.giformthub.io/simplify-js/
11https://leafletjs.com/

14

https://mourner.giformthub.io/simplify-js/
https://leafletjs.com/

3.2 The webassembly solution 3 METHODOLOGY

1 function simplifyLine(coordinates , tolerance , highQuality) {

2 return simplifyJS(coordinates.map(function (coord) {

3 return {x: coord[0], y: coord[1], z: coord [2]};

4 }), tolerance , highQuality).map(function (coords) {

5 return (coords.z) ? [coords.x, coords.y, coords.z] : [coords.x,

coords.y];

6 });

7 }

Listing 4: Turf.js usage of simplify.js

of the licensing header the alterations are restricted to these kind of changes. The full list

of changes can be viewed in lib/simplify-js-alternative/simplify.diff.

1 13,14c4 ,5

2 < var dx = p1.x - p2.x,

3 < dy = p1.y - p2.y;

4 ---

5 > var dx = p1[0] - p2[0],

6 > dy = p1[1] - p2[1];

Listing 5: Snippet of the difference between the original Simplify.js and alternative

3.2 The webassembly solution

In scope of this thesis a library will be created that implements the same procedure as

Simplify.js in C code. It will be made available on the web platform through WebAssembly.

In the style of the model library it will be called Simplify.wasm. The compiler to use will

be Emscripten as it is the standard for porting C code to WebAssembly.

As mentioned the first step is to port Simplify.js to the C programming language.

The file lib/simplify-wasm/simplify.c shows the attempt. It is kept as close to the

JavaScript library as possible. This may result in C-untypical coding style but prevents

skewed results from unexpected optimizations to the procedure itself. The entry point is

not the main-function but a function called simplify. This is specified to the compiler as

can be seen in listing 6.

Furthermore the functions malloc and free from the standard library are made available

for the host environment. Compiling the code through Emscripten produces a binary file

in wasm format and the glue code as JavaScript. These files are called simplify.wasm

and simplify.js respectively.

An example usage can be seen in lib/simplify-wasm/example.html. Even through

the memory access is abstracted in this example the process is still unhandy and far

15

3.2 The webassembly solution 3 METHODOLOGY

1 OPTIMIZE="-O3"

2
3 simplify.wasm simplify.js: simplify.c

4 emcc \

5 ${OPTIMIZE} \

6 --closure 1 \

7 -s WASM=1 \

8 -s ALLOW_MEMORY_GROWTH =1 \

9 -s MODULARIZE =1 \

10 -s EXPORT_ES6 =1 \

11 -s EXPORTED_FUNCTIONS=’[" _simplify", "_malloc", "_free"]’ \

12 -o simplify.js \

13 simplify.c

Listing 6: The call to compile the C source code to WebAssembly in a Makefile

from a drop-in replacement of Simplify.js. Thus in lib/simplify-wasm/index.js a fur-

ther abstraction to the Emscripten emitted code was written. The exported function

simplifyWasm handles module instantiation, memory access and the correct call to the

exported wasm function. Finding the correct path to the wasm binary is not always

clear however when the code is imported from another location. The proposed solution

is to leave the resolving of the code-path to an asset bundler that processes the file in a

preprocessing step.

1 export async function simplifyWasm(coords , tolerance , highestQuality) {

2 const module = await getModule ()

3 const buffer = storeCoords(module , coords)

4 const resultInfo = module._simplify(

5 buffer ,

6 coords.length * 2,

7 tolerance ,

8 highestQuality

9)

10 module._free(buffer)

11 return loadResultAndFreeMemory(module , resultInfo)

12 }

Listing 7: The top level function to invoke the WebAssembly simplification.

Listing 7 shows the function simplifyWasm. Further explanaition will follow regarding

the abstractions getModule, storeCoords and loadResultAndFreeMemory.

Module instantiation will be done on the first call only but requires the function

to be asynchronous. For a neater experience in handling Emscripten modules a util-

16

3.2 The webassembly solution 3 METHODOLOGY

ity function named initEmscripten12 was written to turn the module factory into a

JavaScript Promise that resolves on finished compilation. The usage of this function

can be seen in listing 8. The resulting WebAssembly module is cached in the variable

emscriptenModule.

1 let emscriptenModule

2 export async function getModule () {

3 if (! emscriptenModule)

4 emscriptenModule = initEmscriptenModule(wasmModuleFactory , wasmUrl)

5 return await emscriptenModule

6 }

Listing 8: My Caption

Storing coordinates into the module memory is done in the function storeCoords.

Emscripten offers multiple views on the module memory. These correspond to the avail-

able WebAssembly data types (e.g. HEAP8, HEAPU8, HEAPF32, HEAPF64, ...)13. As

Javascript numbers are always represented as a double-precision 64-bit binary14 (IEEE

754-2008) the HEAP64-view is the way to go to not lose precision. Accordingly the

datatype double is used in C to work with the data. Listing 9 shows the transfer of co-

ordinates into the module memory. In line 3 the memory is allocated using the exported

malloc-function. A JavaScript TypedArray is used for accessing the buffer such that the

loop for storing the values (lines 5 - 8) is trivial.

1 export function storeCoords(module , coords) {

2 const flatSize = coords.length * 2

3 const offset = module._malloc(flatSize * Float64Array.

BYTES_PER_ELEMENT)

4 const heapView = new Float64Array(module.HEAPF64.buffer , offset ,

flatSize)

5 for (let i = 0; i < coords.length; i++) {

6 heapView [2 * i] = coords[i][0]

7 heapView [2 * i + 1] = coords[i][1]

8 }

9 return offset

10 }

Listing 9: The storeCoords function

12/lib/wasm-util/initEmscripten.js
13https://emscripten.org/docs/api_reference/preamble.js.html#

type-accessors-for-the-memory-model
14https://www.ecma-international.org/ecma-262/6.0/#sec-4.3.20

17

https://emscripten.org/docs/api_reference/preamble.js.html#type-accessors-for-the-memory-model
https://emscripten.org/docs/api_reference/preamble.js.html#type-accessors-for-the-memory-model
https://www.ecma-international.org/ecma-262/6.0/#sec-4.3.20

3.2 The webassembly solution 3 METHODOLOGY

To read the result back from memory we have to look at how the simplification will

be returned in the C code. Listing 10 shows the entry point for the C code. This is

the function that gets called from JavaScript. As expected arrays are represented as

pointers with corresponding length. The first block of code (line 2 - 6) is only meant for

declaring needed variables. Lines 8 to 12 mark the radial distance preprocessing. The

result of this simplification is stored in an auxiliary array named resultRdDistance. In

this case points will have to point to the new array and the length is adjusted. Finally

the Douglas-Peucker procedure is invoked after reserving enough memory. The auxiliary

array can be freed afterwards. The problem now is to return the result pointer and the

array length back to the calling code. The fact that pointers in Emscripten are represented

by 32bit will be exploited to return a fixed size array of two integers containing the values.

A hacky solution but it works. We can now look back at how the JavaScript code reads

the result.

1 int* simplify(double * points , int length , double tolerance , int

highestQuality) {

2 double sqTolerance = tolerance * tolerance;

3 double* resultRdDistance = NULL;

4 double* result = NULL;

5 int resultLength;

6
7 if (! highestQuality) {

8 resultRdDistance = malloc(length * sizeof(double));

9 length = simplifyRadialDist(points , length , sqTolerance ,

resultRdDistance);

10 points = resultRdDistance;

11 }

12
13 result = malloc(length * sizeof(double));

14 resultLength = simplifyDouglasPeucker(points , length , sqTolerance ,

result);

15 free(resultRdDistance);

16
17 int* resultInfo = malloc (2);

18 resultInfo [0] = (int) result;

19 resultInfo [1] = resultLength;

20 return resultInfo;

21 }

Listing 10: Entrypoint in the C-file

Listing 11 shows the code to read the values back from module memory. The result

pointer and its length are acquired by dereferencing the resultInfo-array. The buffer

to use is the heap for unsigned 32-bit integers. This information can then be used to

align the Float64Array-view on the 64-bit heap. Constructing the appropriate coordinate

18

3.3 File sizes 3 METHODOLOGY

representation by reversing the flattening can be looked up in the same file. It is realised

in the unflattenCoords function. At last it is important to actually free the memory

reserved for both the result and the result-information. The exported method free is the

way to go here.

1 export function loadResultAndFreeMemory(module , resultInfo) {

2 const [resultPointer , resultLength] = new Uint32Array(

3 module.HEAPU32.buffer ,

4 resultInfo ,

5 2

6)

7 const simplified = new Float64Array(

8 module.HEAPF64.buffer ,

9 resultPointer ,

10 resultLength

11)

12 const coords = unflattenCoords(simplified)

13 module._free(resultInfo)

14 module._free(resultPointer)

15 return coords

Listing 11: Loading coordinates back from module memory

3.3 File sizes

For web applications a important measure is the size of libraries. It defines the cost of

including the functionality in terms of how much the application size will grow. When

it gets too large especially users with low bandwidth are discriminated as it might be

impossible to load the app at all in a reasonable time. Even with fast internet loading

times are relevant as users expect a fast time to first interaction. Also users with limited

data plans are glad when developers keep their bundle size to a minimum.

The file sizes in this chapter will be given as the gzipped size. gzip is a file format

for compressed files based on the DEFLATE algorithm. It is natively supported by all

browsers and the most common web server software. So this is the format that files will

be transmitted in on production applications.

For JavaScript applications there is also the possibility of reducing filesize by code

minification. This is the process of reformating the source code without changing the

functionality. Optimization are brought for example by removing unnecessary parts like

spaces and comments or reducing variable names to single letters. Minification is often

done in asset bundlers that process the JavaScript source files and produce the bundled

application code.

19

3.4 The implementation of a web framework 3 METHODOLOGY

For the WebAssembly solution there are two files required to work with it. The wasm

bytecode and JavaScript gluecode. The glue code is already minified by the Emscripten

compiler. The binary has a size of 3.8KB while the JavaScript code has a total of 3.1KB.

Simplify.js on the other hand will merely need a size of 1.1KB. With minification the size

shrinks to 638 bytes.

File size was not the main priority when producing the WebAssembly solution. There

are ways to further shrink the size of the wasm bytecode. As of now it contains the logic

of the library but also necessary functionality from the C standard library. These were

added by Emscripten automatically. The bloat comes from using the memory management

functions malloc and free. If the goal was to reduce the file size, one would have to get

along without memory management at all. This would even be possible in this case as

the simplification process is a self-contained process and the module has no other usage.

The input size is known beforehand so instead of creating reserved memory one could

just append the result in memory at the location directly after the input feature. The

function would merely need to return the result size. After the call is finished and the

result is read by JavaScript the memory is not needed any more. A test build was made

that renounced from memory management. The size of the wasm bytecode shrunk to 507

byte and the glue code to 2.8KB. By using vanilla JavaScript API one could even ditch

the glue code altogether (Surma 2019).

For simplicity the memory management was left in as the optimizations would require

more careful engineering to ensure correct functionality. The example above shows how-

ever that there is enormous potential to cut the size. Even file sizes below the JavaScript

original are possible.

3.4 The implementation of a web framework

The performance comparison of the two methods will be realized in a web page. It will be

built as a frontend web application that allows the user to specify the input parameters

of the benchmark. These parameters are: the polyline to simplify, a range of tolerances

to use for simplification and if the so called high quality mode shall be used. By building

this application it will be possible to test a variety of use cases on multiple devices. Also

the behavior of the algorithms can be researched under different preconditions. In the

scope of this thesis a few cases will be investigated. The application structure will now

be introduced.

20

3.4 The implementation of a web framework 3 METHODOLOGY

3.4.1 External libraries

The dynamic aspects of the web page will be built in JavaScript. Webpack15 will be

used to bundle the application code and use compilers like babel16 on the source code.

As mentioned in section 3.2 the bundler is also useful for handling references to the

WebAssembly binary as it resolves the filename to the correct download path to use.

There will be intentionally no transpiling of the JavaScript code to older versions of

the ECMA standard. This is often done to increase compatibility with older browsers.

Luckily this is not a requirement in this case and by refraining from this practice there

will also be no unintentional impact on the application performance. Libraries in use are

Benchmark.js17 for statistically significant benchmarking results, React18 for the building

the user interface and Chart.js19 for drawing graphs.

3.4.2 The application logic

The web page consist of static and dynamic content. The static parts refer to the header

and footer with explanation about the project. Those are written directly into the root

HTML document. The dynamic parts are injected by JavaScript. Those will be further

discussed in this chapter as they are the main application logic.

The web app is built to test a variety of cases with multiple datapoints. As mentioned

Benchmark.js will be used for statistically significant results. It is however rather slow as

it needs about 5 to 6 seconds per datapoint. This is why multiple types of benchmarking

methods are implemented. Figure 3.4.2 shows the corresponding UML diagram of the

application. One can see the UI components in the top-left corner. The root component

is App. It gathers all the internal state of its children and passes state down where it is

needed.

3.4.3 Benchmark cases and chart types

In the upper right corner the different Use-Cases are listed. These cases implement a

function "fn" to benchmark. Additional methods for setting up the function and clean

up afterwards can be implemented as given by the parent class BenchmarkCase. Concrete

cases can be created by instantiating one of the BenchmarkCases with a defined set of

parameters. There are three charts that will be rendered using a subset of these cases.

These are:

15https://webpack.js.org/
16https://babeljs.io/
17https://benchmarkjs.com/
18https://reactjs.org/
19https://www.chartjs.org/

21

3.4 The implementation of a web framework 3 METHODOLOGY

Figure 3: UML diagram of the benchmarking application

• Simplify.js vs Simplify.wasm - This Chart shows the performance of the sim-

plification by Simplify.js, the altered version of Simplify.js and the newly developed

Simplify.wasm.

• Simplify.wasm runtime analysis - To further gain insights to WebAssembly

performance this stacked barchart shows the runtime of a call to Simplify.wasm. It

is partitioned into time spent for preparing data (storeCords), the algorithm itself

and the time it took for the coordinates being restored from memory (loadResult).

• Turf.js method runtime analysis - The last chart will use a similar structure.

This time it analyses the performance impact of the back and forth transformation

22

3.4 The implementation of a web framework 3 METHODOLOGY

of data used in Truf.js.

3.4.4 The different benchmark types

On the bottom the different types of Benchmarks implemented can be seen. They all

implement the abstract measure function to return the mean time to run a function

specified in the given BenchmarkCase. The IterationsBenchmark runs the function a

specified number of times, while the OpsPerTimeBenchmark always runs a certain amount

of milliseconds to run as much iterations as possible. Both methods got their benefits and

drawbacks. Using the iterations approach one cannot determine the time the benchmark

runs beforehand. With fast devices and a small number of iterations one can even fall in

the trap of the duration falling under the accuracy of the timer used. Those results would

be unusable of course. It is however a very fast way of determining the speed of a function.

And it holds valuable for getting a first approximation of how the algorithms perform over

the span of datapoints. The second type, the operations per time benchmark, seems to

overcome this problem. It is however prune to garbage collection, engine optimizations

and other background processes. (Mathias Bynens 2010)

Benchmark.js combines these approaches. In a first step it approximates the runtime in

a few cycles. From this value it calculates the number of iterations to reach an uncertainty

of at most 1%. Then the samples are gathered. (Hossain 2012)

3.4.5 The benchmark suite

For running multiple benchmarks the class BenchmarkSuite was created. It takes a

list of BenchmarkCases and runs them through a BenchmarkType. The Suite manages

starting, pausing and stopping of going through list. It updates the statistics gathered

on each cycle. By injecting an onCycle method, the Runner component can give live

feedback about the progress.

Figure 3.4.5 shows the state machine of the suite. Based on this diagram the user

interface component shows action buttons so the user can interact with the state. While

running the suite checks if a state change was requested and acts accordingly by pausing

the benchmarks or resetting all statistics gathered when stopping.

3.4.6 The user interface

The user interface has three regions. One for configuring input parameters. One for

controlling the benchmark process and at last a diagram of the results. Figure 5 shows

the user interface.

23

3.4 The implementation of a web framework 3 METHODOLOGY

Figure 4: The state machine for the benchmark suite

Settings At first the input parameters of the algorithm have to be specified. For that

there are some polylines prepared to choose from. They are introduced in chapter 3.5.

Instead of testing a single tolerance value the user can specify a range. This way the

behavior of the algorithms can be observed in one chart. The high quality mode got

its name from Simplify.js. If it is enabled there will be no radial-distance preprocessing

step before applying the Douglas-Peucker routine. The next option determines which

benchmarks will be run. The options are mentioned in chapter 3.4.3. One of the three

benchmark methods implemented can be selected. Depending on the method chosen

additional options will show to further specify the benchmark parameters. The last option

deals with chart rendering. Debouncing limits the rate at which functions fire. In this

case the chart will delay rendering when datapoints come in at a fast rate.

Run Benchmark This is the control that displays the status of the benchmark suite.

Here benchmarks can be started, stopped, paused and resumed. It also shows the progress

of the benchmarks completed in percentage and absolute numbers.

Chart The chart shows a live diagram of the results. The title represents the selected

chart. The legend gives information on which benchmark cases will run. Also the algo-

rithm parameters (dataset and high quality mode) and current platform description can

be found here. The tolerance range maps over the x-Axis. On the y-Axis two scales can

be seen. The left hand shows by which unit the performance is displayed. This scale

corresponds to the colored lines. Every chart will show the number of positions in the

24

3.4 The implementation of a web framework 3 METHODOLOGY

Figure 5: The user interface for benchmarking application.

25

3.5 The test data 3 METHODOLOGY

result as a grey line. Its scale is displayed on the right. This information is important

for selecting a proper tolerance range as it shows if a appropriate order of magnitude has

been chosen. Below the chart additional control elements are placed to adjust the visu-

alization. The first selection lets the user choose between a linear or logarithmic y-Axis.

The second one changes the unit of measure for performance. The two options are the

mean time in milliseconds per operation (ms) and the number of operations that can be

run in one second (hz). These options are only available for the chart ”Simplify.wasm

vs. Simplify.js” as the other two charts are stacked bar charts where changing the default

options won’t make sense. Finally the result can be saved via a download button. A

separate page can be fed with this file to display the diagram only.

3.5 The test data

Here the test data will be shown. There are two data sets chosen to operate on. The

first is a testing sample used in Simplify.js the second one a boundary generated from the

OpenStreetMap (OSM) data.

Simplify.js example This is the polyline used by Simplify.js to demonstrate its capa-

bilities. Figure 6 shows the widget on its homepage. The user can modify the parameters

with the interactive elements and view the live result. The data comes from a 10.700 mile

car route from Lisboa, Portugal to Singapore and is based on OpenStreetMap data. The

line is defined by 73.752 positions. Even with low tolerances this number reduces dras-

tically. This example shows perfectly why it is important to generalize polylines before

rendering them.

Bavaria outline The second polyline used for benchmarking contains 116.829 positions.

It represents the outline of a german federate state, namely bavaria. It was extracted from

the OSM dataset by selecting administrative boundaries. On the contrary to the former

polyline this one is a closed line, often used in polygons to represent a surface. The plotted

line can be seen in figure 7.

Simple line There is a third line used in the application to choose from. This one

is however not used for benchmarking since it contains only 8 points. It is merely a

placeholder to prevent the client application to load a bigger data sets from the server on

page load. This way the transmitted data size will be reduced. The larger lines will only

be requested when they are actually needed.

26

3.5 The test data 3 METHODOLOGY

Figure 6: The Simplify.js test data visualized

Figure 7: The Bavaria test data visualized

27

4 RESULTS

4 Benchmark results

In this chapter the results are presented. There were a multitude of tests to make.

Multiple devices were used to run several benchmarks on different browsers and under

various parameters. To organize which benchmarks had to run, first all the problem

dimensions were clarified. Devices will be categorized into desktop and mobile devices.

The browsers to test will come from the four major browser vendors which were involved

in WebAssembly development. Those are Firefox from Mozilla, Chrome from Google,

Edge from Microsoft and Safari from Apple. For either of the two data sets a fixed range

of tolerances is set to maintain consistency across the diagrams. The other parameter

”high quality” can be either switched on or off. The three chart types are explained in

chapter 3.4.3.

All benchmark results shown here can be interactively explored at the web page pro-

vided together with this thesis. The static files lie in the build folder. The results can

be found when following the ”show prepared results”-link on the home page.

Each section in this chapter describes a set of benchmarks run on the same system.

A table in the beginning will indicate the problem dimensions chosen to inspect. After a

description of the system and a short summary of the case the results will be presented

in the form of graphs. Those are the graphs produced from the application described in

chapter 3.4. Here the results will only be briefly characterized. A further analysis will

follow in the next chapter.

4.1 Case 1 - WebAssembly vs JavaScript in different browsers

Table 1: Problem dimensions of Case 1

At first it will be observed how the algorithms perform under different browsers. The

chart to use for this is the ”Simplify.js vs Simplify.wasm” chart. For that a Windows

system was chosen as it allows to run benchmarks under three of the four browsers in

question. The dataset is the Simplify.js example which will be simplified with and without

the high quality mode.

28

4.1 Case 1 - WebAssembly vs JavaScript in different browsers 4 RESULTS

The device is a HP Pavilion x360 - 14-ba101ng20 convertible. It contains an Intel R©
CoreTM i5-8250U Processor with 4 cores and 6MB cache. The operating system is Win-

dows 10 and the browsers are on their newest versions with Chrome 75, Firefox 68 and

Edge 44.18362.1.0.

Table 4.1 summarizes the setting. For each problem dimension the chosen character-

istics are highlighted in green color. The number of benchmark diagrams in a chapter is

determined by the multitude of characteristics selected. In the case here there are three

browsers tested each with two quality options resulting in six diagrams to be produced.

Figure 8: Simplify.wasm vs. Simplify.js benchmark result of Windows device with Firefox
browser on dataset ”Simplify.js example” without high quality mode.

The first two graphs (figure 8 and 9) show the results for the Firefox browser. Here

and in all subsequent charts of this chapter the red line indicates the performance of

Simplify.wasm, the blue line represents Simplify.js and the green line its alternative that

operates on coordinates as nested arrays. The gray line represents the number of positions

that remain in the simplified polyline.

Simplify.js runs without the high quality mode per default. Here at the smallest toler-

ance chosen the WebAssembly solution is the fastest method. It is overtaken immediately

by the original JavaScript implementation where it continues to be the fastest one of the

three methods. The alternative is slowest in every case.

In the case of the high quality mode enabled however the original and the WebAssem-

bly solution switch places. Here Simplify.wasm is always faster. The Simplify.js alterna-

20https://support.hp.com/us-en/product/hp-pavilion-14-ba100-x360-convertible-pc/

16851098/model/18280360/document/c05691748

29

https://support.hp.com/us-en/product/hp-pavilion-14-ba100-x360-convertible-pc/16851098/model/18280360/document/c05691748
https://support.hp.com/us-en/product/hp-pavilion-14-ba100-x360-convertible-pc/16851098/model/18280360/document/c05691748

4.1 Case 1 - WebAssembly vs JavaScript in different browsers 4 RESULTS

Figure 9: Simplify.wasm vs. Simplify.js benchmark result of Windows device with Firefox
browser on dataset ”Simplify.js example” with high quality mode.

tive clearly separates itself by being much slower than the other two. It does however

have a steeper curve as the original and the WebAssembly solution have pretty consistent

performance through the whole tolerance range.

Figure 10: Simplify.wasm vs. Simplify.js benchmark result of Windows device with
Chrome browser on dataset ”Simplify.js example” without high quality mode.

Figure 10 and 11 show the results under Chrome for the same setting. Here the

performance seem to be switched around with the original being the slowest method

30

4.1 Case 1 - WebAssembly vs JavaScript in different browsers 4 RESULTS

Figure 11: Simplify.wasm vs. Simplify.js benchmark result of Windows device with
Chrome browser on dataset ”Simplify.js example” with high quality mode.

in both cases. This version has however very inconsistent results. There is no clear

curvature which indicates for some outside influence to the results. Either there is a flaw

in the implementation or a special case of engine optimization was hit.

Without high quality mode the Simplify.wasm gets overtaken by the Simplify.js al-

ternative at 0.4 tolerance. From there on the WebAssembly solution stagnates while the

JavaScript one continues to get faster. With high quality enabled the performance gain of

WebAssembly is more clear than in Firefox. Here the Simplify.js alternative is the second

fastest followed by its original.

Interestingly in the Edge browser the two JavaScript algorithms perform more alike

when high quality disabled. As can be seen in figure 12 The turning point where We-

bAssembly is not the fastest is at around 0.45 to 0.6. When turning high quality on the

graph in figure 13 resembles the chart from Chrome only with more consistent results for

the original implementation.

31

4.2 Case 2 - Simplify.wasm runtime analysis 4 RESULTS

Figure 12: Simplify.wasm vs. Simplify.js benchmark result of Windows device with Edge
browser on dataset ”Simplify.js example” without high quality mode.

Figure 13: Simplify.wasm vs. Simplify.js benchmark result of Windows device with Edge
browser on dataset ”Simplify.js example” with high quality mode.

4.2 Case 2 - Simplify.wasm runtime analysis

For this case the same device as in the former case is used. To compare the results of the

two cases the same dataset is used. Under the Edge browser the Simplify.wasm runtime

analysis was measured. Table 4.2 summarizes this.

The bar charts visualize where the time is spent in the Simplify.wasm implementation.

32

4.2 Case 2 - Simplify.wasm runtime analysis 4 RESULTS

Table 2: Problem dimensions of Case 2

Figure 14: Simplify.wasm runtime analysis benchmark result of Windows device with
Edge browser on dataset ”Simplify.js example” without high quality mode.

Each data point contains a stacked column to represent the proportion of time spent for

each task. The blue section represents the time spent to initialize the memory, the red

one the execution of the compiled WebAssembly code. At last the green part will show

the time spent for getting the coordinates back in the right format.

Inspecting figures 14 and 15 one immediately notices that the time for spent for the

memory preparation does not vary in either of the two cases. Also very little time is needed

to load the result back from memory especially as the tolerance gets higher. Further

analysis of that will follow in chapter 5 as mentioned.

In the case of high quality disabled the results show a very steep curve of the execution

time. Quickly the time span for preparing the memory dominates in the process. In the

second graph it can be seen that the fraction is significantly lower due to the execution

time being consistently higher.

33

4.3 Case 3 - Benchmarking Safari on MacOS 4 RESULTS

Figure 15: Simplify.wasm runtime analysis benchmark result of Windows device with
Edge browser on dataset ”Simplify.js example” with high quality mode.

4.3 Case 3 - Benchmarking Safari on MacOS

Table 3: Problem dimensions of Case 3

A 2018 MacBook Pro 15” will be used to test the safari browser. For comparison the

benchmarks will also be held under Firefox on MacOS. This time the bavarian boundary

will be simplified with both preprocessing enabled and disabled.

At first figure 16 and 17 show the setting under Firefox. And indeed they are compa-

rable to the results from chapter 4.1. In the case of high quality disabled WebAssembly is

fastest for lower tolerances. After a certain point the original is faster while the alternative

comes close to WebAssembly performance but without intersection. When enabling the

high quality mode the original is more close to Simplify.wasm without being faster. The

JavaScript alternative is still trailing behind.

The results of the Safari browser with high quality disabled (figure 18) resembles

the figure 12 where the Edge browser was tested. Both JavaScript versions with similar

performance surpass the WebAssembly version at one point. Unlike the Edge results the

34

4.3 Case 3 - Benchmarking Safari on MacOS 4 RESULTS

Figure 16: Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device with
Firefox browser on dataset ”Bavaria outline” without high quality mode.

Figure 17: Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device with
Firefox browser on dataset ”Bavaria outline” with high quality mode.

original implementation is slightly ahead.

When turning on high quality mode the JavaScript implementations still perform alike.

However Simplify.wasm is clearly faster as seen in figure 19. Simplify.wasm performs here

about twice as fast as the algorithms implemented in JavaScript. Those however have a

steeper decrease as the tolerance numbers go up.

35

4.4 Case 4 - Measuring the Turf.js method 4 RESULTS

Figure 18: Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device with
Safari browser on dataset ”Bavaria outline” without high quality mode.

Figure 19: Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device with
Safari browser on dataset ”Bavaria outline” with high quality mode.

4.4 Case 4 - Measuring the Turf.js method

In this case the system is a Lenovo Miix 510 convertible with Ubuntu 19.04 as the operating

system. Again the bavarian outline is used for simplification with both quality settings.

It will be observed if the Turf.js implementation is reasonable. The third kind of chart

is in use here, which is similar to the Simplify.wasm insights. There are also stacked bar

36

4.4 Case 4 - Measuring the Turf.js method 4 RESULTS

Table 4: Problem dimensions of Case 4

charts used to visualize the time spans of subtasks. The results will be compared to the

graphs of the Simplify.js vs. Simplify.wasm chart. As the Turf.js method only makes sense

when The original Simplify.js is faster than the alternative the benchmarks are performed

in the Firefox browser.

Figure 20: Simplify.wasm vs. Simplify.js benchmark result of Ubuntu device with Firefox
browser on dataset ”Bavaria outline” with high quality mode.

Figure 20 shows how the JavaScript versions perform with high quality enabled. Here

it is clear that the original version is prefereable. In figure 21 one can see the runtime of

the Turf.js method. The red bar here stands for the runtime of the Simplify.js function

call. The blue and green bar is the time taken for the format transformations before

and after the algorithm. Again the preparation of the original data takes significantly

longer than the modification of the simplified line. When the alternative implementation

is so much slower than the original it is actually more performant to transform the data

format. More analysis as mentioned follows in the next chapter.

The next two figures show the case when high quality is disabled. In figure 22 two

algorithms seem to converge. And when looking at figure 23 one can see that the data

37

4.4 Case 4 - Measuring the Turf.js method 4 RESULTS

Figure 21: Turf.js simplify benchmark result of Ubuntu device with Firefox browser on
dataset ”Bavaria outline” with high quality mode.

Figure 22: Simplify.wasm vs. Simplify.js benchmark result of Ubuntu device with Firefox
browser on dataset ”Bavaria outline” without high quality mode.

preparation gets more costly as the tolerance rises. From a tolerance of 0.0014 on the

alternative Simplify.js implementation is faster than the Turf.js method.

38

4.5 Case 5 - Mobile benchmarking 4 RESULTS

Figure 23: Turf.js simplify benchmark result of Ubuntu device with Firefox browser on
dataset ”Bavaria outline” without high quality mode.

4.5 Case 5 - Mobile benchmarking

Table 5: Problem dimensions of Case 5

At last the results from a mobile device will be shown. The device is an iPad Air

with iOS version 12.4. The Simplify.js example is being generalized using Safari and the

Firefox browser. Again both quality settings are used for the benchmarks.

When the high quality parameter is left in its default state the WebAssembly solution

is fastest on low tolerance numbers (figure 24). As seen before the JavaScript versions are

getting faster when the tolerance increases. The original Simplify.js version surpasses the

WebAssembly performance while the alternative tangents it. As it was the case on the

desktop system the algorithms perform similarly when high quality is set to true. Figure

25 shows that Simplify.wasm is also here the faster method.

Interestingly the results in figure 26 and 27 show the exact same results as the Safari

results. In chapter 5 this will be further examined.

39

4.5 Case 5 - Mobile benchmarking 4 RESULTS

Figure 24: Simplify.wasm vs. Simplify.js benchmark result of iPad device with Safari
browser on dataset ”Simplify.js example” without high quality mode.

Figure 25: Simplify.wasm vs. Simplify.js benchmark result of iPad device with Safari
browser on dataset ”Simplify.js example” with high quality mode.

40

4.5 Case 5 - Mobile benchmarking 4 RESULTS

Figure 26: Simplify.wasm vs. Simplify.js benchmark result of iPad device with Firefox
browser on dataset ”Simplify.js example” without high quality mode.

Figure 27: Simplify.wasm vs. Simplify.js benchmark result of iPad device with Firefox
browser on dataset ”Simplify.js example” with high quality mode.

41

5 DISCUSSION

5 Discussion

In this section the results are interpreted. This section is structured in different questions

to answer. First it will be analyzed what the browser differences are. One section will

deal with the performance of the pure JavaScript implementations while the next will

inspect how Simplify.wasm performs. Then further insights to the performance of the

WebAssembly implementation will be given. It will be investigated how long it takes to set

up the WebAssembly call and how much time is spent to actually execute the simplification

routines. Next the case of Turf.js will be addressed and if its format conversions are

reasonable under specific circumstances. Finally the performance of mobile devices will

be evaluated.

5.1 Browser differences for the JavaScript implementations

The first thing to see from the results of chapter 4.1 and 4.3 is that there is actually a

considerable performance difference in the two versions of Simplify.js. So here we take

a closer look at the JavaScript performance of the browsers. Interestingly clear winner

between the similar algorithms cannot be determined as the performance is inconsistent

across browsers. While the original version is faster in Firefox and Safari, the altered ver-

sion is superior in Chrome and Edge. This is regardless of whether the high quality mode

is switched on or not. The difference is however more significant when the preprocessing

step is disabled.

In figure 11 and 13 one can see how similar Chrome and Edge perform with high

quality mode enabled. When disabled however the algorithms perform similar in Edge

(figure 13) while in Chrome the alternative version still improves upon the original.

In Firefox the result is very different. Without the high quality mode the original

version performs about 2.5 times better than the alternative. Figure 8 shows this. When

disabling the preprocessing the performance gain is even higher. the original performs

constantly 3x faster as seen in figure 9.

The same results can be reproduced under Firefox on macOS with the ”Bavarian

outline” dataset (figures 16 and17). Interestingly under safari the algorithms perform

similarly with a small preference to the original version. This applies to either case tested

(figures 18 and 19).

With so much variance it is hard to determine the best performing browser regarding

the JavaScript implementation. Under the right circumstances Chrome can produce the

fastest results with the alternative implementation. Safari is consistently very fast. Even

while it falls short to Firefox’s results with the original algorithm when high quality is

42

5.2 Browser differences for Simplify.wasm 5 DISCUSSION

turned on. The greatest discrepancy was produced by Firefox with high quality requested.

There the alternate version produced the slowest results while the results with Simplify.js

can compete with Chrome’s results with the Simplify.js alternative. Edge lies between

these two browsers with not too bad but also not the fastest results.

5.2 Browser differences for Simplify.wasm

So diverse the results from last chapter were, so monotonous they will be here. The

performance of the Simplify.wasm function is consistent across all browsers tested. This

is a major benefit brought by WebAssembly often described as predictable performance.

The variance it very low when the preprocessing is turned off through the high quality

mode. The browsers produce about the same runtimes under the same conditions. When

high quality is off the Chrome browser got its nose ahead with a mean runtime of 0.66ms.

Edge follows with 1.02ms and Firefox takes an average 1.10ms. The results of chapter 4.3

show that Safari is a bit faster at the high quality mode than Firefox but slower without.

5.3 Insights into Simplify.wasm

So for when the performance of Simplify.wasm was addressed it meant the time spent

for the whole process of preparing memory to running the algorithm in wasm context

to loading back the result to JavaScript. This makes sense when comparing it to the

JavaScript library with the motive to replace it one for one. It does however not produce

meaningful comparisons of WebAssembly performance in contrast to the native JavaScript

runtime.

First the parts where JavaScript is run will be examined. There is as good as no

variance in the memory initialization. This is obviously due to the fact that this step

is not dependent on any other parameter than the polyline length. Initial versions of

the library produced in this thesis were not as efficient in flattening the coordinate array

as the final version. By replacing the built-in Array.prototype.flat-method with a

simple for loop a good amount optimization was achieved on the JavaScript side of the

Simplify.wasm process. The flat method is a rather new feature of ECMAScript and its

performance might be enhanced in future browser versions. This example shows however

that when writing JavaScript code one can quickly deviate from the ”fast path” even

when dealing with simple problems.

On the other side of process lies the function loadResult. It is dependent on the size

of the resulting polyline. Since this is often very low in the examples used the green bar

can be rarely seen. Merely at low tolerance values like in figure 14 the influence is visible.

43

5.4 Comparison Simplify.wasm vs Simplify.js 5 DISCUSSION

The maximum fraction there is at tolerance value 0.05 where the operation takes 4.26%

of the total execution time.

Now when comparing the two graphs one can clearly see that the influence of the

JavaScript portions is much greater when the high quality mode is turned of. The time

taken for preparing the memory in both cases is about 0.67ms. The execution time of the

algorithms is so low in the first case, that it comes down to making up only 24,47% when

taking the median values. In case where high quality is enabled the results do not look as

drastic. The median value of execution time is 4.31ms and with that much greater than

preparation time. If JavaScript is at advantage in the first case and the high execution

time justifies the switch of runtimes in the latter will be examined in the next chapter.

5.4 Comparison Simplify.wasm vs Simplify.js

when is what faster

5.5 Analysis of Turf.js implementation

When is turf.js faster

5.6 Mobile device analysis

44

6 CONCLUSION

6 Conclusion

6.1 Enhancements

Enhancement: Line Smoothing as preprocessing step

6.2 Future Work

45

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Topological editing (top) vs. Non-topological editing (bottom) (Theobald

2001) . 9

2 Example code when compiling a C program (left) to asm.js (right) through

LLVM bytecode (middle) without optimizations. (Zakai 2011) 12

3 UML diagram of the benchmarking application 22

4 The state machine for the benchmark suite 24

5 The user interface for benchmarking application. 25

6 The Simplify.js test data visualized . 27

7 The Bavaria test data visualized . 27

8 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Firefox browser on dataset ”Simplify.js example” without high quality mode. 29

9 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Firefox browser on dataset ”Simplify.js example” with high quality mode. . 30

10 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Chrome browser on dataset ”Simplify.js example” without high quality

mode. 30

11 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Chrome browser on dataset ”Simplify.js example” with high quality mode. 31

12 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Edge browser on dataset ”Simplify.js example” without high quality mode. 32

13 Simplify.wasm vs. Simplify.js benchmark result of Windows device with

Edge browser on dataset ”Simplify.js example” with high quality mode. . . 32

14 Simplify.wasm runtime analysis benchmark result of Windows device with

Edge browser on dataset ”Simplify.js example” without high quality mode. 33

15 Simplify.wasm runtime analysis benchmark result of Windows device with

Edge browser on dataset ”Simplify.js example” with high quality mode. . . 34

16 Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device

with Firefox browser on dataset ”Bavaria outline” without high quality

mode. 35

17 Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device

with Firefox browser on dataset ”Bavaria outline” with high quality mode. 35

18 Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device

with Safari browser on dataset ”Bavaria outline” without high quality mode. 36

19 Simplify.wasm vs. Simplify.js benchmark result of MacBook Pro device

with Safari browser on dataset ”Bavaria outline” with high quality mode. . 36

LIST OF FIGURES LIST OF FIGURES

20 Simplify.wasm vs. Simplify.js benchmark result of Ubuntu device with

Firefox browser on dataset ”Bavaria outline” with high quality mode. . . . 37

21 Turf.js simplify benchmark result of Ubuntu device with Firefox browser

on dataset ”Bavaria outline” with high quality mode. 38

22 Simplify.wasm vs. Simplify.js benchmark result of Ubuntu device with

Firefox browser on dataset ”Bavaria outline” without high quality mode. . 38

23 Turf.js simplify benchmark result of Ubuntu device with Firefox browser

on dataset ”Bavaria outline” without high quality mode. 39

24 Simplify.wasm vs. Simplify.js benchmark result of iPad device with Safari

browser on dataset ”Simplify.js example” without high quality mode. . . . 40

25 Simplify.wasm vs. Simplify.js benchmark result of iPad device with Safari

browser on dataset ”Simplify.js example” with high quality mode. 40

26 Simplify.wasm vs. Simplify.js benchmark result of iPad device with Firefox

browser on dataset ”Simplify.js example” without high quality mode. . . . 41

27 Simplify.wasm vs. Simplify.js benchmark result of iPad device with Firefox

browser on dataset ”Simplify.js example” with high quality mode. 41

LIST OF TABLES LIST OF TABLES

List of Tables

1 Problem dimensions of Case 1 . 28

2 Problem dimensions of Case 2 . 33

3 Problem dimensions of Case 3 . 34

4 Problem dimensions of Case 4 . 37

5 Problem dimensions of Case 5 . 39

LISTINGS LISTINGS

Listings

1 An example for a GeoJSON object . 8

2 Polyline coordinates in nested-array form 10

3 Polyline in array-of-objects form . 10

4 Turf.js usage of simplify.js . 15

5 Snippet of the difference between the original Simplify.js and alternative . . 15

6 The call to compile the C source code to WebAssembly in a Makefile . . . 16

7 The top level function to invoke the WebAssembly simplification. 16

8 My Caption . 17

9 The storeCoords function . 17

10 Entrypoint in the C-file . 18

11 Loading coordinates back from module memory 19

REFERENCES REFERENCES

References

Ai, Tinghua et al. (2017). “Envelope generation and simplification of polylines using De-

launay triangulation”. In: International Journal of Geographical Information Science

31.2, pp. 297–319.

Bostock, Mike (2017). TopoJSON. url: https://github.com/topojson/topojson-

specification.

Brassel, K (1990). “Computergestützte Generalisierung”. In: Schweizerische Gesellschaft

für Kartographie,(Ed.) Kartographisches Generalisieren. Zürich, Orell Füssli Graphis-

che Betriebe, pp. 37–48.

Bray, Tim (2014). “The javascript object notation (json) data interchange format”. In:

url: https://tools.ietf.org/html/rfc8259.

Brophy, M (1973). “An automated methodology for linear generalization in thematic

cartography”. In: proceedings of American congress of surveying and mapping, pp. 300–

314.

Butler, Howard et al. (2016). “The geojson format”. In: RFC 7946; The Internet Engi-

neering Task Force. url: https://tools.ietf.org/html/rfc7946.

Clark, Lin (Feb. 28, 2017). What makes WebAssembly fast? url: https : / / hacks .

mozilla.org/2017/02/what-makes-webassembly-fast/ (visited on 08/15/2019).

Clayton, Victoria H (1985). “Cartographic generalization: a review of feature simplifica-

tion and systematic point algorithms”. In:

Consortium, Open GIS et al. (1999). “OpenGIS simple features specification for SQL”.

In: URL: http://www. opengeospatial. org/docs/99-054. pdf. url: https://portal.

opengeospatial.org/files/?artifact_id=829.

Douglas, David H and Thomas K Peucker (1973). “Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature”. In: Car-

tographica: the international journal for geographic information and geovisualization

10.2, pp. 112–122.

Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly”. In: ACM

SIGPLAN Notices. Vol. 52. 6. ACM, pp. 185–200.

Hossain, Monsur (Dec. 11, 2012). benchmark.js: how it works. url: http://monsur.

hossa.in/2012/12/11/benchmarkjs.html (visited on 08/15/2019).

Koning, Elmar de (2011). “Polyline Simplification”. In:

Lang, T (1969). “Rules for the robot draughtsmen”. In: The Geographical Magazine 42.1,

pp. 50–51.

https://github.com/topojson/topojson-specification
https://github.com/topojson/topojson-specification
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc7946
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://portal.opengeospatial.org/files/?artifact_id=829
https://portal.opengeospatial.org/files/?artifact_id=829
http://monsur.hossa.in/2012/12/11/benchmarkjs.html
http://monsur.hossa.in/2012/12/11/benchmarkjs.html

REFERENCES REFERENCES

Mathias Bynens, John-David Dalton (Dec. 23, 2010). Bulletproof JavaScript benchmarks.

url: https : / / calendar . perfplanet . com / 2010 / bulletproof - javascript -

benchmarks/ (visited on 08/15/2019).

Opheim, Harold (1982). “Fast data reduction of a digitized curve”. In: Geo-processing 2,

pp. 33–40.

Reiser, Micha and Luc Bläser (2017). “Accelerate JavaScript applications by cross-compiling

to WebAssembly”. In: Proceedings of the 9th ACM SIGPLAN International Workshop

on Virtual Machines and Intermediate Languages. ACM, pp. 10–17.

Reumann, K and APM Witkam (1974). Optimizing Curve Segmentation in Computer

Graphics. International Computing Symposium.

Shi, Wenzhong and ChuiKwan Cheung (2006). “Performance evaluation of line simplifica-

tion algorithms for vector generalization”. In: The Cartographic Journal 43.1, pp. 27–

44.

Surma, Das (Mar. 2018). Emscripting a C library to Wasm. url: https://developers.

google . com / web / updates / 2018 / 03 / emscripting - a - c - library (visited on

08/15/2019).

— (Feb. 2019). Replacing a hot path in your app’s JavaScript with WebAssembly. url:

https://developers.google.com/web/updates/2019/02/hotpath-with-wasm

(visited on 08/15/2019).

Theobald, David M (2001). “Understanding topology and shapefiles”. In: Arc-User (April-

June). url: https://www.esri.com/news/arcuser/0401/topo.html.

Visvalingam, Maheswari and James D Whyatt (1993). “Line generalisation by repeated

elimination of points”. In: The cartographic journal 30.1, pp. 46–51.

Wagner, Luke (Feb. 28, 2017). WebAssembly consensus and end of Browser Preview. url:

https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.

html (visited on 08/15/2019).

Zakai, Alon (2011). “Emscripten: an LLVM-to-JavaScript compiler”. In: Proceedings of

the ACM international conference companion on Object oriented programming systems

languages and applications companion. ACM, pp. 301–312.

— (July 1, 2019). Emscripten and the LLVM WebAssembly backend. url: https://v8.

dev/blog/emscripten-llvm-wasm (visited on 08/15/2019).

Zhao, Zhiyuan and Alan Saalfeld (1997). “Linear-time sleeve-fitting polyline simplification

algorithms. In”. In: Proceedings of AutoCarto 13. Citeseer.

https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
https://developers.google.com/web/updates/2018/03/emscripting-a-c-library
https://developers.google.com/web/updates/2018/03/emscripting-a-c-library
https://developers.google.com/web/updates/2019/02/hotpath-with-wasm
https://www.esri.com/news/arcuser/0401/topo.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://v8.dev/blog/emscripten-llvm-wasm
https://v8.dev/blog/emscripten-llvm-wasm

	Introduction
	Binary instruction sets on the web platform
	Performance as important factor for web applications
	Topology simplification for rendering performance
	Related work
	Structure of this thesis

	Theory
	Generalization in cartography
	Polyline simplification
	Summary

	Geodata formats on the Web
	Web runtimes
	Introduction to Webassembly

	Methodology
	State of the art: Simplify.js
	The webassembly solution
	File sizes
	The implementation of a web framework
	External libraries
	The application logic
	Benchmark cases and chart types
	The different benchmark types
	The benchmark suite
	The user interface

	The test data

	Results
	Case 1 - WebAssembly vs JavaScript in different browsers
	Case 2 - Simplify.wasm runtime analysis
	Case 3 - Benchmarking Safari on MacOS
	Case 4 - Measuring the Turf.js method
	Case 5 - Mobile benchmarking

	Discussion
	Browser differences for the JavaScript implementations
	Browser differences for Simplify.wasm
	Insights into Simplify.wasm
	Comparison Simplify.wasm vs Simplify.js
	Analysis of Turf.js implementation
	Mobile device analysis

	Conclusion
	Enhancements
	Future Work

