/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is
* 'psimpl - generic n-dimensional polyline simplification'.
*
* The Initial Developer of the Original Code is
* Elmar de Koning.
* Portions created by the Initial Developer are Copyright (C) 2010-2011
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/*
psimpl - generic n-dimensional polyline simplification
Copyright (C) 2010-2011 Elmar de Koning, edekoning@gmail.com
This file is part of psimpl, and is hosted at SourceForge:
http://sourceforge.net/projects/psimpl/
*/
/*!
\mainpage psimpl - generic n-dimensional polyline simplification
Author - Elmar de Koning
Support - edekoning@gmail.com
Website - http://psimpl.sf.net
Article - http://www.codeproject.com/KB/recipes/PolylineSimplification.aspx
License - MPL 1.1
\section sec_psimpl psimpl
'psimpl' is a c++ polyline simplification library that is generic, easy to use, and supports
the following algorithms:
Simplification
+ Nth point - A naive algorithm that keeps only each nth point
+ Distance between points - Removes successive points that are clustered together
+ Perpendicular distance - Removes points based on their distance to the line segment defined
by their left and right neighbors
+ Reumann-Witkam - Shifts a strip along the polyline and removes points that fall outside
+ Opheim - A constrained version of Reumann-Witkam
+ Lang - Similar to the Perpendicular distance routine, but instead of looking only at direct
neighbors, an entire search region is processed
+ Douglas-Peucker - A classic simplification algorithm that provides an excellent approximation
of the original line
+ A variation on the Douglas-Peucker algorithm - Slower, but yields better results at lower resolutions
Errors
+ positional error - Distance of each polyline point to its simplification
All the algorithms have been implemented in a single standalone C++ header using an STL-style
interface that operates on input and output iterators. Polylines can be of any dimension, and
defined using floating point or signed integer data types.
\section sec_changelog changelog
28-09-2010 - Initial version
23-10-2010 - Changed license from CPOL to MPL
26-10-2010 - Clarified input (type) requirements, and changed the behavior of the algorithms
under invalid input
01-12-2010 - Added the nth point, perpendicular distance and Reumann-Witkam routines; moved all
functions related to distance calculations to the math namespace
10-12-2010 - Fixed a bug in the perpendicular distance routine
27-02-2011 - Added Opheim simplification, and functions for computing positional errors due to
simplification; renamed simplify_douglas_peucker_alt to simplify_douglas_peucker_n
18-06-2011 - Added Lang simplification; fixed divide by zero bug when using integers; fixed a
bug where incorrect output iterators were returned under invalid input; fixed a bug
in douglas_peucker_n where an incorrect number of points could be returned; fixed a
bug in compute_positional_errors2 that required the output and input iterator types
to be the same; fixed a bug in compute_positional_error_statistics where invalid
statistics could be returned under questionable input; documented input iterator
requirements for each algorithm; miscellaneous refactoring of most algorithms.
*/
#ifndef PSIMPL_GENERIC
#define PSIMPL_GENERIC
#include
#include
#include
#include
#include
/*!
\brief Root namespace of the polyline simplification library.
*/
namespace psimpl
{
/*!
\brief Contains utility functions and classes.
*/
namespace util
{
/*!
\brief A smart pointer for holding a dynamically allocated array.
Similar to boost::scoped_array.
*/
template
class scoped_array
{
public:
scoped_array (unsigned n) {
array = new T [n];
}
~scoped_array () {
delete [] array;
}
T& operator [] (int offset) {
return array [offset];
}
const T& operator [] (int offset) const {
return array [offset];
}
T* get () const {
return array;
}
void swap (scoped_array& b) {
T* tmp = b.array;
b.array = array;
array = tmp;
}
private:
scoped_array (const scoped_array&);
scoped_array& operator= (const scoped_array&);
private:
T* array;
};
template inline void swap (scoped_array & a, scoped_array & b) {
a.swap (b);
}
}
/*!
\brief Contains functions for calculating statistics and distances between various geometric entities.
*/
namespace math
{
/*!
\brief POD structure for storing several statistical values
*/
struct Statistics
{
Statistics () :
max (0),
sum (0),
mean (0),
std (0)
{}
double max;
double sum;
double mean;
double std; //! standard deviation
};
/*!
\brief Determines if two points have the exact same coordinates.
\param[in] p1 the first coordinate of the first point
\param[in] p2 the first coordinate of the second point
\return true when the points are equal; false otherwise
*/
template
inline bool equal (
InputIterator p1,
InputIterator p2)
{
for (unsigned d = 0; d < DIM; ++d) {
if (*p1 != *p2) {
return false;
}
++p1;
++p2;
}
return true;
}
/*!
\brief Creates a vector from two points.
\param[in] p1 the first coordinate of the first point
\param[in] p2 the first coordinate of the second point
\param[in] result the resulting vector (p2-p1)
\return one beyond the last coordinate of the resulting vector
*/
template
inline OutputIterator make_vector (
InputIterator p1,
InputIterator p2,
OutputIterator result)
{
for (unsigned d = 0; d < DIM; ++d) {
*result = *p2 - *p1;
++result;
++p1;
++p2;
}
return result;
}
/*!
\brief Computes the dot product of two vectors.
\param[in] v1 the first coordinate of the first vector
\param[in] v2 the first coordinate of the second vector
\return the dot product (v1 * v2)
*/
template
inline typename std::iterator_traits ::value_type dot (
InputIterator v1,
InputIterator v2)
{
typename std::iterator_traits ::value_type result = 0;
for (unsigned d = 0; d < DIM; ++d) {
result += (*v1) * (*v2);
++v1;
++v2;
}
return result;
}
/*!
\brief Peforms linear interpolation between two points.
\param[in] p1 the first coordinate of the first point
\param[in] p2 the first coordinate of the second point
\param[in] fraction the fraction used during interpolation
\param[in] result the interpolation result (p1 + fraction * (p2 - p1))
\return one beyond the last coordinate of the interpolated point
*/
template
inline OutputIterator interpolate (
InputIterator p1,
InputIterator p2,
float fraction,
OutputIterator result)
{
typedef typename std::iterator_traits ::value_type value_type;
for (unsigned d = 0; d < DIM; ++d) {
*result = *p1 + static_cast (fraction * (*p2 - *p1));
++result;
++p1;
++p2;
}
return result;
}
/*!
\brief Computes the squared distance of two points
\param[in] p1 the first coordinate of the first point
\param[in] p2 the first coordinate of the second point
\return the squared distance
*/
template
inline typename std::iterator_traits ::value_type point_distance2 (
InputIterator1 p1,
InputIterator2 p2)
{
typename std::iterator_traits ::value_type result = 0;
for (unsigned d = 0; d < DIM; ++d) {
result += (*p1 - *p2) * (*p1 - *p2);
++p1;
++p2;
}
return result;
}
/*!
\brief Computes the squared distance between an infinite line (l1, l2) and a point p
\param[in] l1 the first coordinate of the first point on the line
\param[in] l2 the first coordinate of the second point on the line
\param[in] p the first coordinate of the test point
\return the squared distance
*/
template
inline typename std::iterator_traits ::value_type line_distance2 (
InputIterator l1,
InputIterator l2,
InputIterator p)
{
typedef typename std::iterator_traits ::value_type value_type;
value_type v [DIM]; // vector l1 --> l2
value_type w [DIM]; // vector l1 --> p
make_vector (l1, l2, v);
make_vector (l1, p, w);
value_type cv = dot (v, v); // squared length of v
value_type cw = dot (w, v); // project w onto v
// avoid problems with divisions when value_type is an integer type
float fraction = cv == 0 ? 0 : static_cast (cw) / static_cast (cv);
value_type proj [DIM]; // p projected onto line (l1, l2)
interpolate (l1, l2, fraction, proj);
return point_distance2 (p, proj);
}
/*!
\brief Computes the squared distance between a line segment (s1, s2) and a point p
\param[in] s1 the first coordinate of the start point of the segment
\param[in] s2 the first coordinate of the end point of the segment
\param[in] p the first coordinate of the test point
\return the squared distance
*/
template
inline typename std::iterator_traits ::value_type segment_distance2 (
InputIterator s1,
InputIterator s2,
InputIterator p)
{
typedef typename std::iterator_traits ::value_type value_type;
value_type v [DIM]; // vector s1 --> s2
value_type w [DIM]; // vector s1 --> p
make_vector (s1, s2, v);
make_vector (s1, p, w);
value_type cw = dot (w, v); // project w onto v
if (cw <= 0) {
// projection of w lies to the left of s1
return point_distance2 (p, s1);
}
value_type cv = dot (v, v); // squared length of v
if (cv <= cw) {
// projection of w lies to the right of s2
return point_distance2 (p, s2);
}
// avoid problems with divisions when value_type is an integer type
float fraction = cv == 0 ? 0 : static_cast (cw) / static_cast (cv);
value_type proj [DIM]; // p projected onto segement (s1, s2)
interpolate (s1, s2, fraction, proj);
return point_distance2 (p, proj);
}
/*!
\brief Computes the squared distance between a ray (r1, r2) and a point p
\param[in] r1 the first coordinate of the start point of the ray
\param[in] r2 the first coordinate of a point on the ray
\param[in] p the first coordinate of the test point
\return the squared distance
*/
template
inline typename std::iterator_traits ::value_type ray_distance2 (
InputIterator r1,
InputIterator r2,
InputIterator p)
{
typedef typename std::iterator_traits ::value_type value_type;
value_type v [DIM]; // vector r1 --> r2
value_type w [DIM]; // vector r1 --> p
make_vector (r1, r2, v);
make_vector (r1, p, w);
value_type cv = dot (v, v); // squared length of v
value_type cw = dot (w, v); // project w onto v
if (cw <= 0) {
// projection of w lies to the left of r1 (not on the ray)
return point_distance2 (p, r1);
}
// avoid problems with divisions when value_type is an integer type
float fraction = cv == 0 ? 0 : static_cast (cw) / static_cast (cv);
value_type proj [DIM]; // p projected onto ray (r1, r2)
interpolate (r1, r2, fraction, proj);
return point_distance2 (p, proj);
}
/*!
\brief Computes various statistics for the range [first, last)
\param[in] first the first value
\param[in] last one beyond the last value
\return the calculated statistics
*/
template
inline Statistics compute_statistics (
InputIterator first,
InputIterator last)
{
typedef typename std::iterator_traits ::value_type value_type;
typedef typename std::iterator_traits ::difference_type diff_type;
Statistics stats;
diff_type count = std::distance (first, last);
if (count == 0) {
return stats;
}
value_type init = 0;
stats.max = static_cast (*std::max_element (first, last));
stats.sum = static_cast (std::accumulate (first, last, init));
stats.mean = stats.sum / count;
std::transform (first, last, first, std::bind2nd (std::minus (), stats.mean));
stats.std = std::sqrt (static_cast (std::inner_product (first, last, first, init)) / count);
return stats;
}
}
/*!
\brief Provides various simplification algorithms for n-dimensional simple polylines.
A polyline is simple when it is non-closed and non-selfintersecting. All algorithms
operate on input iterators and output iterators. Note that unisgned integer types are
NOT supported.
*/
template
class PolylineSimplification
{
typedef typename std::iterator_traits ::difference_type diff_type;
typedef typename std::iterator_traits ::value_type value_type;
typedef typename std::iterator_traits ::difference_type ptr_diff_type;
public:
/*!
\brief Performs the nth point routine (NP).
NP is an O(n) algorithm for polyline simplification. It keeps only the first, last and
each nth point. As an example, consider any random line of 8 points. Using n = 3 will
always yield a simplification consisting of points: 1, 4, 7, 8
\image html psimpl_np.png
NP is applied to the range [first, last). The resulting simplified polyline is copied
to the output range [result, result + m*DIM), where m is the number of vertices of the
simplified polyline. The return value is the end of the output range: result + m*DIM.
Input (Type) requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The input iterator value type is convertible to a value type of the OutputIterator
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- n is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] n specifies 'each nth point'
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator NthPoint (
InputIterator first,
InputIterator last,
unsigned n,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || n < 2) {
return std::copy (first, last, result);
}
unsigned remaining = pointCount - 1; // the number of points remaining after key
InputIterator key = first; // indicates the current key
// the first point is always part of the simplification
CopyKey (key, result);
// copy each nth point
while (Forward (key, n, remaining)) {
CopyKey (key, result);
}
return result;
}
/*!
\brief Performs the (radial) distance between points routine (RD).
RD is a brute-force O(n) algorithm for polyline simplification. It reduces successive
vertices that are clustered too closely to a single vertex, called a key. The resulting
keys form the simplified polyline.
\image html psimpl_rd.png
RD is applied to the range [first, last) using the specified tolerance tol. The
resulting simplified polyline is copied to the output range [result, result + m*DIM),
where m is the number of vertices of the simplified polyline. The return value is the
end of the output range: result + m*DIM.
Input (Type) requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The input iterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- tol is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol radial (point-to-point) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator RadialDistance (
InputIterator first,
InputIterator last,
value_type tol,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
value_type tol2 = tol * tol; // squared distance tolerance
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
return std::copy (first, last, result);
}
InputIterator current = first; // indicates the current key
InputIterator next = first; // used to find the next key
// the first point is always part of the simplification
CopyKeyAdvance (next, result);
// Skip first and last point, because they are always part of the simplification
for (diff_type index = 1; index < pointCount - 1; ++index) {
if (math::point_distance2 (current, next) < tol2) {
Advance (next);
continue;
}
current = next;
CopyKeyAdvance (next, result);
}
// the last point is always part of the simplification
CopyKeyAdvance (next, result);
return result;
}
/*!
\brief Repeatedly performs the perpendicular distance routine (PD).
The algorithm stops after calling the PD routine 'repeat' times OR when the
simplification does not improve. Note that this algorithm will need to store
up to two intermediate simplification results.
\sa PerpendicularDistance(InputIterator, InputIterator, value_type, OutputIterator)
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (segment-to-point) distance tolerance
\param[in] repeat the number of times to successively apply the PD routine
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator PerpendicularDistance (
InputIterator first,
InputIterator last,
value_type tol,
unsigned repeat,
OutputIterator result)
{
if (repeat == 1) {
// single pass
return PerpendicularDistance (first, last, tol, result);
}
// only validate repeat; other input is validated by simplify_perpendicular_distance
if (repeat < 1) {
return std::copy (first, last, result);
}
diff_type coordCount = std::distance (first, last);
// first pass: [first, last) --> temporary array 'tempPoly'
util::scoped_array tempPoly (coordCount);
PolylineSimplification psimpl_to_array;
diff_type tempCoordCount = std::distance (tempPoly.get (),
psimpl_to_array.PerpendicularDistance (first, last, tol, tempPoly.get ()));
// check if simplification did not improved
if (coordCount == tempCoordCount) {
return std::copy (tempPoly.get (), tempPoly.get () + coordCount, result);
}
std::swap (coordCount, tempCoordCount);
--repeat;
// intermediate passes: temporary array 'tempPoly' --> temporary array 'tempResult'
if (1 < repeat) {
util::scoped_array tempResult (coordCount);
PolylineSimplification psimpl_arrays;
while (--repeat) {
tempCoordCount = std::distance (tempResult.get (),
psimpl_arrays.PerpendicularDistance (
tempPoly.get (), tempPoly.get () + coordCount, tol, tempResult.get ()));
// check if simplification did not improved
if (coordCount == tempCoordCount) {
return std::copy (tempPoly.get (), tempPoly.get () + coordCount, result);
}
util::swap (tempPoly, tempResult);
std::swap (coordCount, tempCoordCount);
}
}
// final pass: temporary array 'tempPoly' --> result
PolylineSimplification psimpl_from_array;
return psimpl_from_array.PerpendicularDistance (
tempPoly.get (), tempPoly.get () + coordCount, tol, result);
}
/*!
\brief Performs the perpendicular distance routine (PD).
PD is an O(n) algorithm for polyline simplification. It computes the perpendicular
distance of each point pi to the line segment S(pi-1, pi+1). Only when this distance is
larger than the given tolerance will pi be part of the simpification. Note that the
original polyline can only be reduced by a maximum of 50%. Multiple passes are required
to achieve higher points reductions.
\image html psimpl_pd.png
PD is applied to the range [first, last) using the specified tolerance tol. The
resulting simplified polyline is copied to the output range [result, result + m*DIM),
where m is the number of vertices of the simplified polyline. The return value is the
end of the output range: result + m*DIM.
Input (Type) requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The input iterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- tol is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (segment-to-point) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator PerpendicularDistance (
InputIterator first,
InputIterator last,
value_type tol,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
value_type tol2 = tol * tol; // squared distance tolerance
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
return std::copy (first, last, result);
}
InputIterator p0 = first;
InputIterator p1 = AdvanceCopy(p0);
InputIterator p2 = AdvanceCopy(p1);
// the first point is always part of the simplification
CopyKey (p0, result);
while (p2 != last) {
// test p1 against line segment S(p0, p2)
if (math::segment_distance2 (p0, p2, p1) < tol2) {
CopyKey (p2, result);
// move up by two points
p0 = p2;
Advance (p1, 2);
if (p1 == last) {
// protect against advancing p2 beyond last
break;
}
Advance (p2, 2);
}
else {
CopyKey (p1, result);
// move up by one point
p0 = p1;
p1 = p2;
Advance (p2);
}
}
// make sure the last point is part of the simplification
if (p1 != last) {
CopyKey (p1, result);
}
return result;
}
/*!
\brief Performs Reumann-Witkam approximation (RW).
The O(n) RW routine uses a point-to-line (perpendicular) distance tolerance. It defines
a line through the first two vertices of the original polyline. For each successive
vertex vi its perpendicular distance to this line is calculated. A new key is found at
vi-1, when this distance exceeds the specified tolerance. The vertices vi and vi+1 are
then used to define a new line, and the process repeats itself.
\image html psimpl_rw.png
RW routine is applied to the range [first, last) using the specified perpendicular
distance tolerance tol. The resulting simplified polyline is copied to the output range
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
The return value is the end of the output range: result + m*DIM.
Input (Type) Requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The input iterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains vertex coordinates in multiples of DIM,
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- tol is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-line) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator ReumannWitkam (
InputIterator first,
InputIterator last,
value_type tol,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
value_type tol2 = tol * tol; // squared distance tolerance
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
return std::copy (first, last, result);
}
// define the line L(p0, p1)
InputIterator p0 = first; // indicates the current key
InputIterator p1 = AdvanceCopy (first); // indicates the next point after p0
// keep track of two test points
InputIterator pi = p1; // the previous test point
InputIterator pj = p1; // the current test point (pi+1)
// the first point is always part of the simplification
CopyKey (p0, result);
// check each point pj against L(p0, p1)
for (diff_type j = 2; j < pointCount; ++j) {
pi = pj;
Advance (pj);
if (math::line_distance2 (p0, p1, pj) < tol2) {
continue;
}
// found the next key at pi
CopyKey (pi, result);
// define new line L(pi, pj)
p0 = pi;
p1 = pj;
}
// the last point is always part of the simplification
CopyKey (pj, result);
return result;
}
/*!
\brief Performs Opheim approximation (OP).
The O(n) OP routine is very similar to the Reumann-Witkam (RW) routine, and can be seen
as a constrained version of that RW routine. OP uses both a minimum and a maximum
distance tolerance to constrain the search area. For each successive vertex vi, its
radial distance to the current key vkey (initially v0) is calculated. The last point
within the minimum distance tolerance is used to define a ray R (vkey, vi). If no
such vi exists, the ray is defined as R(vkey, vkey+1). For each successive vertex vj
beyond vi its perpendicular distance to the ray R is calculated. A new key is found at
vj-1, when this distance exceeds the minimum tolerance Or when the radial distance
between vj and the vkey exceeds the maximum tolerance. After a new key is found, the
process repeats itself.
\image html psimpl_op.png
OP routine is applied to the range [first, last) using the specified distance tolerances
min_tol and max_tol. The resulting simplified polyline is copied to the output range
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
The return value is the end of the output range: result + m*DIM.
Input (Type) Requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The input iterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains vertex coordinates in multiples of DIM,
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- min_tol is not 0
7- max_tol is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] min_tol radial and perpendicular (point-to-ray) distance tolerance
\param[in] max_tol radial distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator Opheim (
InputIterator first,
InputIterator last,
value_type min_tol,
value_type max_tol,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
value_type min_tol2 = min_tol * min_tol; // squared minimum distance tolerance
value_type max_tol2 = max_tol * max_tol; // squared maximum distance tolerance
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || min_tol2 == 0 || max_tol2 == 0) {
return std::copy (first, last, result);
}
// define the ray R(r0, r1)
InputIterator r0 = first; // indicates the current key and start of the ray
InputIterator r1 = first; // indicates a point on the ray
bool rayDefined = false;
// keep track of two test points
InputIterator pi = r0; // the previous test point
InputIterator pj = // the current test point (pi+1)
AdvanceCopy (pi);
// the first point is always part of the simplification
CopyKey (r0, result);
for (diff_type j = 2; j < pointCount; ++j) {
pi = pj;
Advance (pj);
if (!rayDefined) {
// discard each point within minimum tolerance
if (math::point_distance2 (r0, pj) < min_tol2) {
continue;
}
// the last point within minimum tolerance pi defines the ray R(r0, r1)
r1 = pi;
rayDefined = true;
}
// check each point pj against R(r0, r1)
if (math::point_distance2 (r0, pj) < max_tol2 &&
math::ray_distance2 (r0, r1, pj) < min_tol2)
{
continue;
}
// found the next key at pi
CopyKey (pi, result);
// define new ray R(pi, pj)
r0 = pi;
rayDefined = false;
}
// the last point is always part of the simplification
CopyKey (pj, result);
return result;
}
/*!
\brief Performs Lang approximation (LA).
The LA routine defines a fixed size search-region. The first and last points of that
search region form a segment. This segment is used to calculate the perpendicular
distance to each intermediate point. If any calculated distance is larger than the
specified tolerance, the search region will be shrunk by excluding its last point. This
process will continue untill all calculated distances fall below the specified tolerance
, or there are no more intermediate points. At this point all intermediate points are
removed and a new search region is defined starting at the last point from old search
region.
Note that the size of the search region (look_ahead parameter) controls the maximum
amount of simplification, e.g.: a size of 20 will always result in a simplification that
contains at least 5% of the original points.
\image html psimpl_la.png
LA routine is applied to the range [first, last) using the specified tolerance and
look ahead values. The resulting simplified polyline is copied to the output range
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
The return value is the end of the output range: result + m*DIM.
Input (Type) Requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a bidirectional iterator
3- The InputIterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains vertex coordinates in multiples of DIM,
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- tol is not 0
7- look_ahead is not zero
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-segment) distance tolerance
\param[in] look_ahead defines the size of the search region
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator Lang (
InputIterator first,
InputIterator last,
value_type tol,
unsigned look_ahead,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
value_type tol2 = tol * tol; // squared minimum distance tolerance
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || look_ahead < 2 || tol2 == 0) {
return std::copy (first, last, result);
}
InputIterator current = first; // indicates the current key
InputIterator next = first; // used to find the next key
unsigned remaining = pointCount - 1; // the number of points remaining after current
unsigned moved = Forward (next, look_ahead, remaining);
// the first point is always part of the simplification
CopyKey (current, result);
while (moved) {
value_type d2 = 0;
InputIterator p = AdvanceCopy (current);
while (p != next) {
d2 = std::max (d2, math::segment_distance2 (current, next, p));
if (tol2 < d2) {
break;
}
Advance (p);
}
if (d2 < tol2) {
current = next;
CopyKey (current, result);
moved = Forward (next, look_ahead, remaining);
}
else {
Backward (next, remaining);
}
}
return result;
}
/*!
\brief Performs Douglas-Peucker approximation (DP).
The DP algorithm uses the RadialDistance (RD) routine O(n) as a preprocessing step.
After RD the algorithm is O (n m) in worst case and O(n log m) on average, where m < n
(m is the number of points after RD).
The DP algorithm starts with a simplification that is the single edge joining the first
and last vertices of the polyline. The distance of the remaining vertices to that edge
are computed. The vertex that is furthest away from theedge (called a key), and has a
computed distance that is larger than a specified tolerance, will be added to the
simplification. This process will recurse for each edge in the current simplification,
untill all vertices of the original polyline are within tolerance.
\image html psimpl_dp.png
Note that this algorithm will create a copy of the input polyline during the vertex
reduction step.
RD followed by DP is applied to the range [first, last) using the specified tolerance
tol. The resulting simplified polyline is copied to the output range
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
The return value is the end of the output range: result + m*DIM.
Input (Type) requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The InputIterator value type is convertible to a value type of the output iterator
4- The range [first, last) contains vertex coordinates in multiples of DIM, f.e.:
x, y, z, x, y, z, x, y, z when DIM = 3
5- The range [first, last) contains at least 2 vertices
6- tol is not 0
In case these requirements are not met, the entire input range [first, last) is copied
to the output range [result, result + (last - first)) OR compile errors may occur.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-segment) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
OutputIterator DouglasPeucker (
InputIterator first,
InputIterator last,
value_type tol,
OutputIterator result)
{
diff_type coordCount = std::distance (first, last);
diff_type pointCount = DIM // protect against zero DIM
? coordCount / DIM
: 0;
// validate input and check if simplification required
if (coordCount % DIM || pointCount < 3 || tol == 0) {
return std::copy (first, last, result);
}
// radial distance routine as preprocessing
util::scoped_array reduced (coordCount); // radial distance results
PolylineSimplification psimpl_to_array;
ptr_diff_type reducedCoordCount = std::distance (reduced.get (),
psimpl_to_array.RadialDistance (first, last, tol, reduced.get ()));
ptr_diff_type reducedPointCount = reducedCoordCount / DIM;
// douglas-peucker approximation
util::scoped_array keys (pointCount); // douglas-peucker results
DPHelper::Approximate (reduced.get (), reducedCoordCount, tol, keys.get ());
// copy all keys
const value_type* current = reduced.get ();
for (ptr_diff_type p=0; p (count) || count < 2) {
return std::copy (first, last, result);
}
// copy coords
util::scoped_array coords (coordCount);
for (ptr_diff_type c=0; c keys (pointCount);
DPHelper::ApproximateN (coords.get (), coordCount, count, keys.get ());
// copy keys
const value_type* current = coords.get ();
for (ptr_diff_type p=0; p (original_first, simplified_first))
{
if (valid) {
*valid = false;
}
return result;
}
// define (simplified) line segment S(simplified_prev, simplified_first)
InputIterator simplified_prev = simplified_first;
std::advance (simplified_first, DIM);
// process each simplified line segment
while (simplified_first != simplified_last) {
// process each original point until it equals the end of the line segment
while (original_first != original_last &&
!math::equal (original_first, simplified_first))
{
*result = math::segment_distance2 (simplified_prev, simplified_first,
original_first);
++result;
std::advance (original_first, DIM);
}
// update line segment S
simplified_prev = simplified_first;
std::advance (simplified_first, DIM);
}
// check if last original point matched
if (original_first != original_last) {
*result = 0;
++result;
}
if (valid) {
*valid = original_first != original_last;
}
return result;
}
/*!
\brief Computes statistics for the positional errors between a polyline and its simplification.
Various statistics (mean, max, sum, std) are calculated for the positional errors
between the range [original_first, original_last) and its simplification the range
[simplified_first, simplified_last).
Input (Type) requirements:
1- DIM is not 0, where DIM represents the dimension of the polyline
2- The InputIterator type models the concept of a forward iterator
3- The InputIterator value type is convertible to double
4- The ranges [original_first, original_last) and [simplified_first, simplified_last)
contain vertex coordinates in multiples of DIM, f.e.: x, y, z, x, y, z, x, y, z
when DIM = 3
5- The ranges [original_first, original_last) and [simplified_first, simplified_last)
contain a minimum of 2 vertices
6- The range [simplified_first, simplified_last) represents a simplification of the
range [original_first, original_last), meaning each point in the simplification
has the exact same coordinates as some point from the original polyline
In case these requirements are not met, the valid flag is set to false OR
compile errors may occur.
\sa ComputePositionalErrors2
\param[in] original_first the first coordinate of the first polyline point
\param[in] original_last one beyond the last coordinate of the last polyline point
\param[in] simplified_first the first coordinate of the first simplified polyline point
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
\param[out] valid [optional] indicates if the computed statistics are valid
\return the computed statistics
*/
math::Statistics ComputePositionalErrorStatistics (
InputIterator original_first,
InputIterator original_last,
InputIterator simplified_first,
InputIterator simplified_last,
bool* valid=0)
{
diff_type pointCount = std::distance (original_first, original_last) / DIM;
util::scoped_array errors (pointCount);
PolylineSimplification ps;
diff_type errorCount =
std::distance (
errors.get (),
ps.ComputePositionalErrors2 (original_first, original_last,
simplified_first, simplified_last,
errors.get (), valid));
std::transform (errors.get (), errors.get () + errorCount,
errors.get (),
std::ptr_fun (std::sqrt));
return math::compute_statistics (errors.get (), errors.get () + errorCount);
}
private:
/*!
\brief Copies the key to the output destination, and increments the iterator.
\sa CopyKey
\param[in,out] key the first coordinate of the key
\param[in,out] result destination of the copied key
*/
inline void CopyKeyAdvance (
InputIterator& key,
OutputIterator& result)
{
for (unsigned d = 0; d < DIM; ++d) {
*result = *key;
++result;
++key;
}
}
/*!
\brief Copies the key to the output destination.
\sa CopyKeyAdvance
\param[in] key the first coordinate of the key
\param[in,out] result destination of the copied key
*/
inline void CopyKey (
InputIterator key,
OutputIterator& result)
{
CopyKeyAdvance (key, result);
}
/*!
\brief Increments the iterator by n points.
\sa AdvanceCopy
\param[in,out] it iterator to be advanced
\param[in] n number of points to advance
*/
inline void Advance (
InputIterator& it,
diff_type n = 1)
{
std::advance (it, n * static_cast (DIM));
}
/*!
\brief Increments a copy of the iterator by n points.
\sa Advance
\param[in] it iterator to be advanced
\param[in] n number of points to advance
\return an incremented copy of the input iterator
*/
inline InputIterator AdvanceCopy (
InputIterator it,
diff_type n = 1)
{
Advance (it, n);
return it;
}
/*!
\brief Increments the iterator by n points if possible.
If there are fewer than n point remaining the iterator will be incremented to the last
point.
\sa Backward
\param[in,out] it iterator to be advanced
\param[in] n number of points to advance
\param[in,out] remaining number of points remaining after it
\return the actual amount of points that the iterator advanced
*/
inline unsigned Forward (
InputIterator& it,
unsigned n,
unsigned& remaining)
{
n = std::min (n, remaining);
Advance (it, n);
remaining -= n;
return n;
}
/*!
\brief Decrements the iterator by 1 point.
\sa Forward
\param[in,out] it iterator to be advanced
\param[in,out] remaining number of points remaining after it
*/
inline void Backward (
InputIterator& it,
unsigned& remaining)
{
Advance (it, -1);
++remaining;
}
private:
/*!
\brief Douglas-Peucker approximation helper class.
Contains helper implentations for Douglas-Peucker approximation that operate solely on
value_type arrays and value_type pointers. Note that the PolylineSimplification
class only operates on iterators.
*/
class DPHelper
{
//! \brief Defines a sub polyline.
struct SubPoly {
SubPoly (ptr_diff_type first=0, ptr_diff_type last=0) :
first (first), last (last) {}
ptr_diff_type first; //! coord index of the first point
ptr_diff_type last; //! coord index of the last point
};
//! \brief Defines the key of a polyline.
struct KeyInfo {
KeyInfo (ptr_diff_type index=0, value_type dist2=0) :
index (index), dist2 (dist2) {}
ptr_diff_type index; //! coord index of the key
value_type dist2; //! squared distance of the key to a segment
};
//! \brief Defines a sub polyline including its key.
struct SubPolyAlt {
SubPolyAlt (ptr_diff_type first=0, ptr_diff_type last=0) :
first (first), last (last) {}
ptr_diff_type first; //! coord index of the first point
ptr_diff_type last; //! coord index of the last point
KeyInfo keyInfo; //! key of this sub poly
bool operator< (const SubPolyAlt& other) const {
return keyInfo.dist2 < other.keyInfo.dist2;
}
};
public:
/*!
\brief Performs Douglas-Peucker approximation.
\param[in] coords array of polyline coordinates
\param[in] coordCount number of coordinates in coords []
\param[in] tol approximation tolerance
\param[out] keys indicates for each polyline point if it is a key
*/
static void Approximate (
const value_type* coords,
ptr_diff_type coordCount,
value_type tol,
unsigned char* keys)
{
value_type tol2 = tol * tol; // squared distance tolerance
ptr_diff_type pointCount = coordCount / DIM;
// zero out keys
std::fill_n (keys, pointCount, 0);
keys [0] = 1; // the first point is always a key
keys [pointCount - 1] = 1; // the last point is always a key
typedef std::stack Stack;
Stack stack; // LIFO job-queue containing sub-polylines
SubPoly subPoly (0, coordCount-DIM);
stack.push (subPoly); // add complete poly
while (!stack.empty ()) {
subPoly = stack.top (); // take a sub poly
stack.pop (); // and find its key
KeyInfo keyInfo = FindKey (coords, subPoly.first, subPoly.last);
if (keyInfo.index && tol2 < keyInfo.dist2) {
// store the key if valid
keys [keyInfo.index / DIM] = 1;
// split the polyline at the key and recurse
stack.push (SubPoly (keyInfo.index, subPoly.last));
stack.push (SubPoly (subPoly.first, keyInfo.index));
}
}
}
/*!
\brief Performs Douglas-Peucker approximation.
\param[in] coords array of polyline coordinates
\param[in] coordCount number of coordinates in coords []
\param[in] countTol point count tolerance
\param[out] keys indicates for each polyline point if it is a key
*/
static void ApproximateN (
const value_type* coords,
ptr_diff_type coordCount,
unsigned countTol,
unsigned char* keys)
{
ptr_diff_type pointCount = coordCount / DIM;
// zero out keys
std::fill_n (keys, pointCount, 0);
keys [0] = 1; // the first point is always a key
keys [pointCount - 1] = 1; // the last point is always a key
unsigned keyCount = 2;
if (countTol == 2) {
return;
}
typedef std::priority_queue PriorityQueue;
PriorityQueue queue; // sorted (max dist2) job queue containing sub-polylines
SubPolyAlt subPoly (0, coordCount-DIM);
subPoly.keyInfo = FindKey (coords, subPoly.first, subPoly.last);
queue.push (subPoly); // add complete poly
while (!queue.empty ()) {
subPoly = queue.top (); // take a sub poly
queue.pop ();
// store the key
keys [subPoly.keyInfo.index / DIM] = 1;
// check point count tolerance
keyCount++;
if (keyCount == countTol) {
break;
}
// split the polyline at the key and recurse
SubPolyAlt left (subPoly.first, subPoly.keyInfo.index);
left.keyInfo = FindKey (coords, left.first, left.last);
if (left.keyInfo.index) {
queue.push (left);
}
SubPolyAlt right (subPoly.keyInfo.index, subPoly.last);
right.keyInfo = FindKey (coords, right.first, right.last);
if (right.keyInfo.index) {
queue.push (right);
}
}
}
private:
/*!
\brief Finds the key for the given sub polyline.
Finds the point in the range [first, last] that is furthest away from the
segment (first, last). This point is called the key.
\param[in] coords array of polyline coordinates
\param[in] first the first coordinate of the first polyline point
\param[in] last the first coordinate of the last polyline point
\return the index of the key and its distance, or last when a key
could not be found
*/
static KeyInfo FindKey (
const value_type* coords,
ptr_diff_type first,
ptr_diff_type last)
{
KeyInfo keyInfo;
for (ptr_diff_type current = first + DIM; current < last; current += DIM) {
value_type d2 = math::segment_distance2 (coords + first, coords + last,
coords + current);
if (d2 < keyInfo.dist2) {
continue;
}
// update maximum squared distance and the point it belongs to
keyInfo.index = current;
keyInfo.dist2 = d2;
}
return keyInfo;
}
};
};
/*!
\brief Performs the nth point routine (NP).
This is a convenience function that provides template type deduction for
PolylineSimplification::NthPoint.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] n specifies 'each nth point'
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_nth_point (
ForwardIterator first,
ForwardIterator last,
unsigned n,
OutputIterator result)
{
PolylineSimplification ps;
return ps.NthPoint (first, last, n, result);
}
/*!
\brief Performs the (radial) distance between points routine (RD).
This is a convenience function that provides template type deduction for
PolylineSimplification::RadialDistance.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol radial (point-to-point) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_radial_distance (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type tol,
OutputIterator result)
{
PolylineSimplification ps;
return ps.RadialDistance (first, last, tol, result);
}
/*!
\brief Repeatedly performs the perpendicular distance routine (PD).
This is a convenience function that provides template type deduction for
PolylineSimplification::PerpendicularDistance.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (segment-to-point) distance tolerance
\param[in] repeat the number of times to successively apply the PD routine.
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_perpendicular_distance (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type tol,
unsigned repeat,
OutputIterator result)
{
PolylineSimplification ps;
return ps.PerpendicularDistance (first, last, tol, repeat, result);
}
/*!
\brief Performs the perpendicular distance routine (PD).
This is a convenience function that provides template type deduction for
PolylineSimplification::PerpendicularDistance.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (segment-to-point) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_perpendicular_distance (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type tol,
OutputIterator result)
{
PolylineSimplification ps;
return ps.PerpendicularDistance (first, last, tol, result);
}
/*!
\brief Performs Reumann-Witkam polyline simplification (RW).
This is a convenience function that provides template type deduction for
PolylineSimplification::ReumannWitkam.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-line) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_reumann_witkam (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type tol,
OutputIterator result)
{
PolylineSimplification ps;
return ps.ReumannWitkam (first, last, tol, result);
}
/*!
\brief Performs Opheim polyline simplification (OP).
This is a convenience function that provides template type deduction for
PolylineSimplification::Opheim.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] min_tol minimum distance tolerance
\param[in] max_tol maximum distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_opheim (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type min_tol,
typename std::iterator_traits ::value_type max_tol,
OutputIterator result)
{
PolylineSimplification ps;
return ps.Opheim (first, last, min_tol, max_tol, result);
}
/*!
\brief Performs Lang polyline simplification (LA).
This is a convenience function that provides template type deduction for
PolylineSimplification::Lang.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-segment) distance tolerance
\param[in] look_ahead defines the size of the search region
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_lang (
BidirectionalIterator first,
BidirectionalIterator last,
typename std::iterator_traits ::value_type tol,
unsigned look_ahead,
OutputIterator result)
{
PolylineSimplification ps;
return ps.Lang (first, last, tol, look_ahead, result);
}
/*!
\brief Performs Douglas-Peucker polyline simplification (DP).
This is a convenience function that provides template type deduction for
PolylineSimplification::DouglasPeucker.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] tol perpendicular (point-to-segment) distance tolerance
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_douglas_peucker (
ForwardIterator first,
ForwardIterator last,
typename std::iterator_traits ::value_type tol,
OutputIterator result)
{
PolylineSimplification ps;
return ps.DouglasPeucker (first, last, tol, result);
}
/*!
\brief Performs a variant of Douglas-Peucker polyline simplification (DPn).
This is a convenience function that provides template type deduction for
PolylineSimplification::DouglasPeuckerAlt.
\param[in] first the first coordinate of the first polyline point
\param[in] last one beyond the last coordinate of the last polyline point
\param[in] count the maximum number of points of the simplified polyline
\param[in] result destination of the simplified polyline
\return one beyond the last coordinate of the simplified polyline
*/
template
OutputIterator simplify_douglas_peucker_n (
ForwardIterator first,
ForwardIterator last,
unsigned count,
OutputIterator result)
{
PolylineSimplification ps;
return ps.DouglasPeuckerN (first, last, count, result);
}
/*!
\brief Computes the squared positional error between a polyline and its simplification.
This is a convenience function that provides template type deduction for
PolylineSimplification::ComputePositionalErrors2.
\param[in] original_first the first coordinate of the first polyline point
\param[in] original_last one beyond the last coordinate of the last polyline point
\param[in] simplified_first the first coordinate of the first simplified polyline point
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
\param[in] result destination of the squared positional errors
\param[out] valid [optional] indicates if the computed positional errors are valid
\return one beyond the last computed positional error
*/
template
OutputIterator compute_positional_errors2 (
ForwardIterator original_first,
ForwardIterator original_last,
ForwardIterator simplified_first,
ForwardIterator simplified_last,
OutputIterator result,
bool* valid=0)
{
PolylineSimplification ps;
return ps.ComputePositionalErrors2 (original_first, original_last, simplified_first, simplified_last, result, valid);
}
/*!
\brief Computes statistics for the positional errors between a polyline and its simplification.
This is a convenience function that provides template type deduction for
PolylineSimplification::ComputePositionalErrorStatistics.
\param[in] original_first the first coordinate of the first polyline point
\param[in] original_last one beyond the last coordinate of the last polyline point
\param[in] simplified_first the first coordinate of the first simplified polyline point
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
\param[out] valid [optional] indicates if the computed statistics are valid
\return the computed statistics
*/
template
math::Statistics compute_positional_error_statistics (
ForwardIterator original_first,
ForwardIterator original_last,
ForwardIterator simplified_first,
ForwardIterator simplified_last,
bool* valid=0)
{
PolylineSimplification ps;
return ps.ComputePositionalErrorStatistics (original_first, original_last, simplified_first, simplified_last, valid);
}
}
#endif // PSIMPL_GENERIC