1891 lines
84 KiB
C
1891 lines
84 KiB
C
|
/* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is
|
||
|
* 'psimpl - generic n-dimensional polyline simplification'.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Elmar de Koning.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 2010-2011
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
|
||
|
/*
|
||
|
psimpl - generic n-dimensional polyline simplification
|
||
|
Copyright (C) 2010-2011 Elmar de Koning, edekoning@gmail.com
|
||
|
|
||
|
This file is part of psimpl, and is hosted at SourceForge:
|
||
|
http://sourceforge.net/projects/psimpl/
|
||
|
*/
|
||
|
|
||
|
/*!
|
||
|
\mainpage psimpl - generic n-dimensional polyline simplification
|
||
|
|
||
|
<pre>
|
||
|
Author - Elmar de Koning
|
||
|
Support - edekoning@gmail.com
|
||
|
Website - http://psimpl.sf.net
|
||
|
Article - http://www.codeproject.com/KB/recipes/PolylineSimplification.aspx
|
||
|
License - MPL 1.1
|
||
|
</pre><br>
|
||
|
|
||
|
\section sec_psimpl psimpl
|
||
|
<pre>
|
||
|
'psimpl' is a c++ polyline simplification library that is generic, easy to use, and supports
|
||
|
the following algorithms:
|
||
|
|
||
|
Simplification
|
||
|
+ Nth point - A naive algorithm that keeps only each nth point
|
||
|
+ Distance between points - Removes successive points that are clustered together
|
||
|
+ Perpendicular distance - Removes points based on their distance to the line segment defined
|
||
|
by their left and right neighbors
|
||
|
+ Reumann-Witkam - Shifts a strip along the polyline and removes points that fall outside
|
||
|
+ Opheim - A constrained version of Reumann-Witkam
|
||
|
+ Lang - Similar to the Perpendicular distance routine, but instead of looking only at direct
|
||
|
neighbors, an entire search region is processed
|
||
|
+ Douglas-Peucker - A classic simplification algorithm that provides an excellent approximation
|
||
|
of the original line
|
||
|
+ A variation on the Douglas-Peucker algorithm - Slower, but yields better results at lower resolutions
|
||
|
|
||
|
Errors
|
||
|
+ positional error - Distance of each polyline point to its simplification
|
||
|
|
||
|
All the algorithms have been implemented in a single standalone C++ header using an STL-style
|
||
|
interface that operates on input and output iterators. Polylines can be of any dimension, and
|
||
|
defined using floating point or signed integer data types.
|
||
|
</pre><br>
|
||
|
|
||
|
\section sec_changelog changelog
|
||
|
<pre>
|
||
|
28-09-2010 - Initial version
|
||
|
23-10-2010 - Changed license from CPOL to MPL
|
||
|
26-10-2010 - Clarified input (type) requirements, and changed the behavior of the algorithms
|
||
|
under invalid input
|
||
|
01-12-2010 - Added the nth point, perpendicular distance and Reumann-Witkam routines; moved all
|
||
|
functions related to distance calculations to the math namespace
|
||
|
10-12-2010 - Fixed a bug in the perpendicular distance routine
|
||
|
27-02-2011 - Added Opheim simplification, and functions for computing positional errors due to
|
||
|
simplification; renamed simplify_douglas_peucker_alt to simplify_douglas_peucker_n
|
||
|
18-06-2011 - Added Lang simplification; fixed divide by zero bug when using integers; fixed a
|
||
|
bug where incorrect output iterators were returned under invalid input; fixed a bug
|
||
|
in douglas_peucker_n where an incorrect number of points could be returned; fixed a
|
||
|
bug in compute_positional_errors2 that required the output and input iterator types
|
||
|
to be the same; fixed a bug in compute_positional_error_statistics where invalid
|
||
|
statistics could be returned under questionable input; documented input iterator
|
||
|
requirements for each algorithm; miscellaneous refactoring of most algorithms.
|
||
|
</pre>
|
||
|
*/
|
||
|
|
||
|
#ifndef PSIMPL_GENERIC
|
||
|
#define PSIMPL_GENERIC
|
||
|
|
||
|
|
||
|
#include <queue>
|
||
|
#include <stack>
|
||
|
#include <numeric>
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
|
||
|
|
||
|
/*!
|
||
|
\brief Root namespace of the polyline simplification library.
|
||
|
*/
|
||
|
namespace psimpl
|
||
|
{
|
||
|
/*!
|
||
|
\brief Contains utility functions and classes.
|
||
|
*/
|
||
|
namespace util
|
||
|
{
|
||
|
/*!
|
||
|
\brief A smart pointer for holding a dynamically allocated array.
|
||
|
|
||
|
Similar to boost::scoped_array.
|
||
|
*/
|
||
|
template <typename T>
|
||
|
class scoped_array
|
||
|
{
|
||
|
public:
|
||
|
scoped_array (unsigned n) {
|
||
|
array = new T [n];
|
||
|
}
|
||
|
|
||
|
~scoped_array () {
|
||
|
delete [] array;
|
||
|
}
|
||
|
|
||
|
T& operator [] (int offset) {
|
||
|
return array [offset];
|
||
|
}
|
||
|
|
||
|
const T& operator [] (int offset) const {
|
||
|
return array [offset];
|
||
|
}
|
||
|
|
||
|
T* get () const {
|
||
|
return array;
|
||
|
}
|
||
|
|
||
|
void swap (scoped_array& b) {
|
||
|
T* tmp = b.array;
|
||
|
b.array = array;
|
||
|
array = tmp;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
scoped_array (const scoped_array&);
|
||
|
scoped_array& operator= (const scoped_array&);
|
||
|
|
||
|
private:
|
||
|
T* array;
|
||
|
};
|
||
|
|
||
|
template <typename T> inline void swap (scoped_array <T>& a, scoped_array <T>& b) {
|
||
|
a.swap (b);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Contains functions for calculating statistics and distances between various geometric entities.
|
||
|
*/
|
||
|
namespace math
|
||
|
{
|
||
|
/*!
|
||
|
\brief POD structure for storing several statistical values
|
||
|
*/
|
||
|
struct Statistics
|
||
|
{
|
||
|
Statistics () :
|
||
|
max (0),
|
||
|
sum (0),
|
||
|
mean (0),
|
||
|
std (0)
|
||
|
{}
|
||
|
|
||
|
double max;
|
||
|
double sum;
|
||
|
double mean;
|
||
|
double std; //! standard deviation
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
\brief Determines if two points have the exact same coordinates.
|
||
|
|
||
|
\param[in] p1 the first coordinate of the first point
|
||
|
\param[in] p2 the first coordinate of the second point
|
||
|
\return true when the points are equal; false otherwise
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator>
|
||
|
inline bool equal (
|
||
|
InputIterator p1,
|
||
|
InputIterator p2)
|
||
|
{
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
if (*p1 != *p2) {
|
||
|
return false;
|
||
|
}
|
||
|
++p1;
|
||
|
++p2;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Creates a vector from two points.
|
||
|
|
||
|
\param[in] p1 the first coordinate of the first point
|
||
|
\param[in] p2 the first coordinate of the second point
|
||
|
\param[in] result the resulting vector (p2-p1)
|
||
|
\return one beyond the last coordinate of the resulting vector
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator, class OutputIterator>
|
||
|
inline OutputIterator make_vector (
|
||
|
InputIterator p1,
|
||
|
InputIterator p2,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
*result = *p2 - *p1;
|
||
|
++result;
|
||
|
++p1;
|
||
|
++p2;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the dot product of two vectors.
|
||
|
|
||
|
\param[in] v1 the first coordinate of the first vector
|
||
|
\param[in] v2 the first coordinate of the second vector
|
||
|
\return the dot product (v1 * v2)
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator>
|
||
|
inline typename std::iterator_traits <InputIterator>::value_type dot (
|
||
|
InputIterator v1,
|
||
|
InputIterator v2)
|
||
|
{
|
||
|
typename std::iterator_traits <InputIterator>::value_type result = 0;
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
result += (*v1) * (*v2);
|
||
|
++v1;
|
||
|
++v2;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Peforms linear interpolation between two points.
|
||
|
|
||
|
\param[in] p1 the first coordinate of the first point
|
||
|
\param[in] p2 the first coordinate of the second point
|
||
|
\param[in] fraction the fraction used during interpolation
|
||
|
\param[in] result the interpolation result (p1 + fraction * (p2 - p1))
|
||
|
\return one beyond the last coordinate of the interpolated point
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator, class OutputIterator>
|
||
|
inline OutputIterator interpolate (
|
||
|
InputIterator p1,
|
||
|
InputIterator p2,
|
||
|
float fraction,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
*result = *p1 + static_cast <value_type> (fraction * (*p2 - *p1));
|
||
|
++result;
|
||
|
++p1;
|
||
|
++p2;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared distance of two points
|
||
|
|
||
|
\param[in] p1 the first coordinate of the first point
|
||
|
\param[in] p2 the first coordinate of the second point
|
||
|
\return the squared distance
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator1, class InputIterator2>
|
||
|
inline typename std::iterator_traits <InputIterator1>::value_type point_distance2 (
|
||
|
InputIterator1 p1,
|
||
|
InputIterator2 p2)
|
||
|
{
|
||
|
typename std::iterator_traits <InputIterator1>::value_type result = 0;
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
result += (*p1 - *p2) * (*p1 - *p2);
|
||
|
++p1;
|
||
|
++p2;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared distance between an infinite line (l1, l2) and a point p
|
||
|
|
||
|
\param[in] l1 the first coordinate of the first point on the line
|
||
|
\param[in] l2 the first coordinate of the second point on the line
|
||
|
\param[in] p the first coordinate of the test point
|
||
|
\return the squared distance
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator>
|
||
|
inline typename std::iterator_traits <InputIterator>::value_type line_distance2 (
|
||
|
InputIterator l1,
|
||
|
InputIterator l2,
|
||
|
InputIterator p)
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
|
||
|
value_type v [DIM]; // vector l1 --> l2
|
||
|
value_type w [DIM]; // vector l1 --> p
|
||
|
|
||
|
make_vector <DIM> (l1, l2, v);
|
||
|
make_vector <DIM> (l1, p, w);
|
||
|
|
||
|
value_type cv = dot <DIM> (v, v); // squared length of v
|
||
|
value_type cw = dot <DIM> (w, v); // project w onto v
|
||
|
|
||
|
// avoid problems with divisions when value_type is an integer type
|
||
|
float fraction = cv == 0 ? 0 : static_cast <float> (cw) / static_cast <float> (cv);
|
||
|
|
||
|
value_type proj [DIM]; // p projected onto line (l1, l2)
|
||
|
interpolate <DIM> (l1, l2, fraction, proj);
|
||
|
|
||
|
return point_distance2 <DIM> (p, proj);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared distance between a line segment (s1, s2) and a point p
|
||
|
|
||
|
\param[in] s1 the first coordinate of the start point of the segment
|
||
|
\param[in] s2 the first coordinate of the end point of the segment
|
||
|
\param[in] p the first coordinate of the test point
|
||
|
\return the squared distance
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator>
|
||
|
inline typename std::iterator_traits <InputIterator>::value_type segment_distance2 (
|
||
|
InputIterator s1,
|
||
|
InputIterator s2,
|
||
|
InputIterator p)
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
|
||
|
value_type v [DIM]; // vector s1 --> s2
|
||
|
value_type w [DIM]; // vector s1 --> p
|
||
|
|
||
|
make_vector <DIM> (s1, s2, v);
|
||
|
make_vector <DIM> (s1, p, w);
|
||
|
|
||
|
value_type cw = dot <DIM> (w, v); // project w onto v
|
||
|
if (cw <= 0) {
|
||
|
// projection of w lies to the left of s1
|
||
|
return point_distance2 <DIM> (p, s1);
|
||
|
}
|
||
|
|
||
|
value_type cv = dot <DIM> (v, v); // squared length of v
|
||
|
if (cv <= cw) {
|
||
|
// projection of w lies to the right of s2
|
||
|
return point_distance2 <DIM> (p, s2);
|
||
|
}
|
||
|
|
||
|
// avoid problems with divisions when value_type is an integer type
|
||
|
float fraction = cv == 0 ? 0 : static_cast <float> (cw) / static_cast <float> (cv);
|
||
|
|
||
|
value_type proj [DIM]; // p projected onto segement (s1, s2)
|
||
|
interpolate <DIM> (s1, s2, fraction, proj);
|
||
|
|
||
|
return point_distance2 <DIM> (p, proj);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared distance between a ray (r1, r2) and a point p
|
||
|
|
||
|
\param[in] r1 the first coordinate of the start point of the ray
|
||
|
\param[in] r2 the first coordinate of a point on the ray
|
||
|
\param[in] p the first coordinate of the test point
|
||
|
\return the squared distance
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator>
|
||
|
inline typename std::iterator_traits <InputIterator>::value_type ray_distance2 (
|
||
|
InputIterator r1,
|
||
|
InputIterator r2,
|
||
|
InputIterator p)
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
|
||
|
value_type v [DIM]; // vector r1 --> r2
|
||
|
value_type w [DIM]; // vector r1 --> p
|
||
|
|
||
|
make_vector <DIM> (r1, r2, v);
|
||
|
make_vector <DIM> (r1, p, w);
|
||
|
|
||
|
value_type cv = dot <DIM> (v, v); // squared length of v
|
||
|
value_type cw = dot <DIM> (w, v); // project w onto v
|
||
|
|
||
|
if (cw <= 0) {
|
||
|
// projection of w lies to the left of r1 (not on the ray)
|
||
|
return point_distance2 <DIM> (p, r1);
|
||
|
}
|
||
|
|
||
|
// avoid problems with divisions when value_type is an integer type
|
||
|
float fraction = cv == 0 ? 0 : static_cast <float> (cw) / static_cast <float> (cv);
|
||
|
|
||
|
value_type proj [DIM]; // p projected onto ray (r1, r2)
|
||
|
interpolate <DIM> (r1, r2, fraction, proj);
|
||
|
|
||
|
return point_distance2 <DIM> (p, proj);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes various statistics for the range [first, last)
|
||
|
|
||
|
\param[in] first the first value
|
||
|
\param[in] last one beyond the last value
|
||
|
\return the calculated statistics
|
||
|
*/
|
||
|
template <class InputIterator>
|
||
|
inline Statistics compute_statistics (
|
||
|
InputIterator first,
|
||
|
InputIterator last)
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
typedef typename std::iterator_traits <InputIterator>::difference_type diff_type;
|
||
|
|
||
|
Statistics stats;
|
||
|
|
||
|
diff_type count = std::distance (first, last);
|
||
|
if (count == 0) {
|
||
|
return stats;
|
||
|
}
|
||
|
|
||
|
value_type init = 0;
|
||
|
stats.max = static_cast <double> (*std::max_element (first, last));
|
||
|
stats.sum = static_cast <double> (std::accumulate (first, last, init));
|
||
|
stats.mean = stats.sum / count;
|
||
|
std::transform (first, last, first, std::bind2nd (std::minus <value_type> (), stats.mean));
|
||
|
stats.std = std::sqrt (static_cast <double> (std::inner_product (first, last, first, init)) / count);
|
||
|
return stats;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Provides various simplification algorithms for n-dimensional simple polylines.
|
||
|
|
||
|
A polyline is simple when it is non-closed and non-selfintersecting. All algorithms
|
||
|
operate on input iterators and output iterators. Note that unisgned integer types are
|
||
|
NOT supported.
|
||
|
*/
|
||
|
template <unsigned DIM, class InputIterator, class OutputIterator>
|
||
|
class PolylineSimplification
|
||
|
{
|
||
|
typedef typename std::iterator_traits <InputIterator>::difference_type diff_type;
|
||
|
typedef typename std::iterator_traits <InputIterator>::value_type value_type;
|
||
|
typedef typename std::iterator_traits <const value_type*>::difference_type ptr_diff_type;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
\brief Performs the nth point routine (NP).
|
||
|
|
||
|
NP is an O(n) algorithm for polyline simplification. It keeps only the first, last and
|
||
|
each nth point. As an example, consider any random line of 8 points. Using n = 3 will
|
||
|
always yield a simplification consisting of points: 1, 4, 7, 8
|
||
|
|
||
|
\image html psimpl_np.png
|
||
|
|
||
|
NP is applied to the range [first, last). The resulting simplified polyline is copied
|
||
|
to the output range [result, result + m*DIM), where m is the number of vertices of the
|
||
|
simplified polyline. The return value is the end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The input iterator value type is convertible to a value type of the OutputIterator
|
||
|
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
|
||
|
x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- n is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] n specifies 'each nth point'
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator NthPoint (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
unsigned n,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || n < 2) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
unsigned remaining = pointCount - 1; // the number of points remaining after key
|
||
|
InputIterator key = first; // indicates the current key
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKey (key, result);
|
||
|
|
||
|
// copy each nth point
|
||
|
while (Forward (key, n, remaining)) {
|
||
|
CopyKey (key, result);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs the (radial) distance between points routine (RD).
|
||
|
|
||
|
RD is a brute-force O(n) algorithm for polyline simplification. It reduces successive
|
||
|
vertices that are clustered too closely to a single vertex, called a key. The resulting
|
||
|
keys form the simplified polyline.
|
||
|
|
||
|
\image html psimpl_rd.png
|
||
|
|
||
|
RD is applied to the range [first, last) using the specified tolerance tol. The
|
||
|
resulting simplified polyline is copied to the output range [result, result + m*DIM),
|
||
|
where m is the number of vertices of the simplified polyline. The return value is the
|
||
|
end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The input iterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
|
||
|
x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- tol is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol radial (point-to-point) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator RadialDistance (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
value_type tol2 = tol * tol; // squared distance tolerance
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
InputIterator current = first; // indicates the current key
|
||
|
InputIterator next = first; // used to find the next key
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKeyAdvance (next, result);
|
||
|
|
||
|
// Skip first and last point, because they are always part of the simplification
|
||
|
for (diff_type index = 1; index < pointCount - 1; ++index) {
|
||
|
if (math::point_distance2 <DIM> (current, next) < tol2) {
|
||
|
Advance (next);
|
||
|
continue;
|
||
|
}
|
||
|
current = next;
|
||
|
CopyKeyAdvance (next, result);
|
||
|
}
|
||
|
// the last point is always part of the simplification
|
||
|
CopyKeyAdvance (next, result);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Repeatedly performs the perpendicular distance routine (PD).
|
||
|
|
||
|
The algorithm stops after calling the PD routine 'repeat' times OR when the
|
||
|
simplification does not improve. Note that this algorithm will need to store
|
||
|
up to two intermediate simplification results.
|
||
|
|
||
|
\sa PerpendicularDistance(InputIterator, InputIterator, value_type, OutputIterator)
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (segment-to-point) distance tolerance
|
||
|
\param[in] repeat the number of times to successively apply the PD routine
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator PerpendicularDistance (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
unsigned repeat,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
if (repeat == 1) {
|
||
|
// single pass
|
||
|
return PerpendicularDistance (first, last, tol, result);
|
||
|
}
|
||
|
// only validate repeat; other input is validated by simplify_perpendicular_distance
|
||
|
if (repeat < 1) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
|
||
|
// first pass: [first, last) --> temporary array 'tempPoly'
|
||
|
util::scoped_array <value_type> tempPoly (coordCount);
|
||
|
PolylineSimplification <DIM, InputIterator, value_type*> psimpl_to_array;
|
||
|
diff_type tempCoordCount = std::distance (tempPoly.get (),
|
||
|
psimpl_to_array.PerpendicularDistance (first, last, tol, tempPoly.get ()));
|
||
|
|
||
|
// check if simplification did not improved
|
||
|
if (coordCount == tempCoordCount) {
|
||
|
return std::copy (tempPoly.get (), tempPoly.get () + coordCount, result);
|
||
|
}
|
||
|
std::swap (coordCount, tempCoordCount);
|
||
|
--repeat;
|
||
|
|
||
|
// intermediate passes: temporary array 'tempPoly' --> temporary array 'tempResult'
|
||
|
if (1 < repeat) {
|
||
|
util::scoped_array <value_type> tempResult (coordCount);
|
||
|
PolylineSimplification <DIM, value_type*, value_type*> psimpl_arrays;
|
||
|
|
||
|
while (--repeat) {
|
||
|
tempCoordCount = std::distance (tempResult.get (),
|
||
|
psimpl_arrays.PerpendicularDistance (
|
||
|
tempPoly.get (), tempPoly.get () + coordCount, tol, tempResult.get ()));
|
||
|
|
||
|
// check if simplification did not improved
|
||
|
if (coordCount == tempCoordCount) {
|
||
|
return std::copy (tempPoly.get (), tempPoly.get () + coordCount, result);
|
||
|
}
|
||
|
util::swap (tempPoly, tempResult);
|
||
|
std::swap (coordCount, tempCoordCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// final pass: temporary array 'tempPoly' --> result
|
||
|
PolylineSimplification <DIM, value_type*, OutputIterator> psimpl_from_array;
|
||
|
return psimpl_from_array.PerpendicularDistance (
|
||
|
tempPoly.get (), tempPoly.get () + coordCount, tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs the perpendicular distance routine (PD).
|
||
|
|
||
|
PD is an O(n) algorithm for polyline simplification. It computes the perpendicular
|
||
|
distance of each point pi to the line segment S(pi-1, pi+1). Only when this distance is
|
||
|
larger than the given tolerance will pi be part of the simpification. Note that the
|
||
|
original polyline can only be reduced by a maximum of 50%. Multiple passes are required
|
||
|
to achieve higher points reductions.
|
||
|
|
||
|
\image html psimpl_pd.png
|
||
|
|
||
|
PD is applied to the range [first, last) using the specified tolerance tol. The
|
||
|
resulting simplified polyline is copied to the output range [result, result + m*DIM),
|
||
|
where m is the number of vertices of the simplified polyline. The return value is the
|
||
|
end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The input iterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains only vertex coordinates in multiples of DIM, f.e.:
|
||
|
x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- tol is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (segment-to-point) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator PerpendicularDistance (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
value_type tol2 = tol * tol; // squared distance tolerance
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
InputIterator p0 = first;
|
||
|
InputIterator p1 = AdvanceCopy(p0);
|
||
|
InputIterator p2 = AdvanceCopy(p1);
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKey (p0, result);
|
||
|
|
||
|
while (p2 != last) {
|
||
|
// test p1 against line segment S(p0, p2)
|
||
|
if (math::segment_distance2 <DIM> (p0, p2, p1) < tol2) {
|
||
|
CopyKey (p2, result);
|
||
|
// move up by two points
|
||
|
p0 = p2;
|
||
|
Advance (p1, 2);
|
||
|
if (p1 == last) {
|
||
|
// protect against advancing p2 beyond last
|
||
|
break;
|
||
|
}
|
||
|
Advance (p2, 2);
|
||
|
}
|
||
|
else {
|
||
|
CopyKey (p1, result);
|
||
|
// move up by one point
|
||
|
p0 = p1;
|
||
|
p1 = p2;
|
||
|
Advance (p2);
|
||
|
}
|
||
|
}
|
||
|
// make sure the last point is part of the simplification
|
||
|
if (p1 != last) {
|
||
|
CopyKey (p1, result);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Reumann-Witkam approximation (RW).
|
||
|
|
||
|
The O(n) RW routine uses a point-to-line (perpendicular) distance tolerance. It defines
|
||
|
a line through the first two vertices of the original polyline. For each successive
|
||
|
vertex vi its perpendicular distance to this line is calculated. A new key is found at
|
||
|
vi-1, when this distance exceeds the specified tolerance. The vertices vi and vi+1 are
|
||
|
then used to define a new line, and the process repeats itself.
|
||
|
|
||
|
\image html psimpl_rw.png
|
||
|
|
||
|
RW routine is applied to the range [first, last) using the specified perpendicular
|
||
|
distance tolerance tol. The resulting simplified polyline is copied to the output range
|
||
|
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
|
||
|
The return value is the end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) Requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The input iterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains vertex coordinates in multiples of DIM,
|
||
|
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- tol is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-line) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator ReumannWitkam (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
value_type tol2 = tol * tol; // squared distance tolerance
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || tol2 == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
// define the line L(p0, p1)
|
||
|
InputIterator p0 = first; // indicates the current key
|
||
|
InputIterator p1 = AdvanceCopy (first); // indicates the next point after p0
|
||
|
|
||
|
// keep track of two test points
|
||
|
InputIterator pi = p1; // the previous test point
|
||
|
InputIterator pj = p1; // the current test point (pi+1)
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKey (p0, result);
|
||
|
|
||
|
// check each point pj against L(p0, p1)
|
||
|
for (diff_type j = 2; j < pointCount; ++j) {
|
||
|
pi = pj;
|
||
|
Advance (pj);
|
||
|
|
||
|
if (math::line_distance2 <DIM> (p0, p1, pj) < tol2) {
|
||
|
continue;
|
||
|
}
|
||
|
// found the next key at pi
|
||
|
CopyKey (pi, result);
|
||
|
// define new line L(pi, pj)
|
||
|
p0 = pi;
|
||
|
p1 = pj;
|
||
|
}
|
||
|
// the last point is always part of the simplification
|
||
|
CopyKey (pj, result);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Opheim approximation (OP).
|
||
|
|
||
|
The O(n) OP routine is very similar to the Reumann-Witkam (RW) routine, and can be seen
|
||
|
as a constrained version of that RW routine. OP uses both a minimum and a maximum
|
||
|
distance tolerance to constrain the search area. For each successive vertex vi, its
|
||
|
radial distance to the current key vkey (initially v0) is calculated. The last point
|
||
|
within the minimum distance tolerance is used to define a ray R (vkey, vi). If no
|
||
|
such vi exists, the ray is defined as R(vkey, vkey+1). For each successive vertex vj
|
||
|
beyond vi its perpendicular distance to the ray R is calculated. A new key is found at
|
||
|
vj-1, when this distance exceeds the minimum tolerance Or when the radial distance
|
||
|
between vj and the vkey exceeds the maximum tolerance. After a new key is found, the
|
||
|
process repeats itself.
|
||
|
|
||
|
\image html psimpl_op.png
|
||
|
|
||
|
OP routine is applied to the range [first, last) using the specified distance tolerances
|
||
|
min_tol and max_tol. The resulting simplified polyline is copied to the output range
|
||
|
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
|
||
|
The return value is the end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) Requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The input iterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains vertex coordinates in multiples of DIM,
|
||
|
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- min_tol is not 0
|
||
|
7- max_tol is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] min_tol radial and perpendicular (point-to-ray) distance tolerance
|
||
|
\param[in] max_tol radial distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator Opheim (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type min_tol,
|
||
|
value_type max_tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
value_type min_tol2 = min_tol * min_tol; // squared minimum distance tolerance
|
||
|
value_type max_tol2 = max_tol * max_tol; // squared maximum distance tolerance
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || min_tol2 == 0 || max_tol2 == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
// define the ray R(r0, r1)
|
||
|
InputIterator r0 = first; // indicates the current key and start of the ray
|
||
|
InputIterator r1 = first; // indicates a point on the ray
|
||
|
bool rayDefined = false;
|
||
|
|
||
|
// keep track of two test points
|
||
|
InputIterator pi = r0; // the previous test point
|
||
|
InputIterator pj = // the current test point (pi+1)
|
||
|
AdvanceCopy (pi);
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKey (r0, result);
|
||
|
|
||
|
for (diff_type j = 2; j < pointCount; ++j) {
|
||
|
pi = pj;
|
||
|
Advance (pj);
|
||
|
|
||
|
if (!rayDefined) {
|
||
|
// discard each point within minimum tolerance
|
||
|
if (math::point_distance2 <DIM> (r0, pj) < min_tol2) {
|
||
|
continue;
|
||
|
}
|
||
|
// the last point within minimum tolerance pi defines the ray R(r0, r1)
|
||
|
r1 = pi;
|
||
|
rayDefined = true;
|
||
|
}
|
||
|
|
||
|
// check each point pj against R(r0, r1)
|
||
|
if (math::point_distance2 <DIM> (r0, pj) < max_tol2 &&
|
||
|
math::ray_distance2 <DIM> (r0, r1, pj) < min_tol2)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
// found the next key at pi
|
||
|
CopyKey (pi, result);
|
||
|
// define new ray R(pi, pj)
|
||
|
r0 = pi;
|
||
|
rayDefined = false;
|
||
|
}
|
||
|
// the last point is always part of the simplification
|
||
|
CopyKey (pj, result);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Lang approximation (LA).
|
||
|
|
||
|
The LA routine defines a fixed size search-region. The first and last points of that
|
||
|
search region form a segment. This segment is used to calculate the perpendicular
|
||
|
distance to each intermediate point. If any calculated distance is larger than the
|
||
|
specified tolerance, the search region will be shrunk by excluding its last point. This
|
||
|
process will continue untill all calculated distances fall below the specified tolerance
|
||
|
, or there are no more intermediate points. At this point all intermediate points are
|
||
|
removed and a new search region is defined starting at the last point from old search
|
||
|
region.
|
||
|
Note that the size of the search region (look_ahead parameter) controls the maximum
|
||
|
amount of simplification, e.g.: a size of 20 will always result in a simplification that
|
||
|
contains at least 5% of the original points.
|
||
|
|
||
|
\image html psimpl_la.png
|
||
|
|
||
|
LA routine is applied to the range [first, last) using the specified tolerance and
|
||
|
look ahead values. The resulting simplified polyline is copied to the output range
|
||
|
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
|
||
|
The return value is the end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) Requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a bidirectional iterator
|
||
|
3- The InputIterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains vertex coordinates in multiples of DIM,
|
||
|
f.e.: x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- tol is not 0
|
||
|
7- look_ahead is not zero
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-segment) distance tolerance
|
||
|
\param[in] look_ahead defines the size of the search region
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator Lang (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
unsigned look_ahead,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
value_type tol2 = tol * tol; // squared minimum distance tolerance
|
||
|
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || look_ahead < 2 || tol2 == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
InputIterator current = first; // indicates the current key
|
||
|
InputIterator next = first; // used to find the next key
|
||
|
|
||
|
unsigned remaining = pointCount - 1; // the number of points remaining after current
|
||
|
unsigned moved = Forward (next, look_ahead, remaining);
|
||
|
|
||
|
// the first point is always part of the simplification
|
||
|
CopyKey (current, result);
|
||
|
|
||
|
while (moved) {
|
||
|
value_type d2 = 0;
|
||
|
InputIterator p = AdvanceCopy (current);
|
||
|
|
||
|
while (p != next) {
|
||
|
d2 = std::max (d2, math::segment_distance2 <DIM> (current, next, p));
|
||
|
if (tol2 < d2) {
|
||
|
break;
|
||
|
}
|
||
|
Advance (p);
|
||
|
}
|
||
|
if (d2 < tol2) {
|
||
|
current = next;
|
||
|
CopyKey (current, result);
|
||
|
moved = Forward (next, look_ahead, remaining);
|
||
|
}
|
||
|
else {
|
||
|
Backward (next, remaining);
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Douglas-Peucker approximation (DP).
|
||
|
|
||
|
The DP algorithm uses the RadialDistance (RD) routine O(n) as a preprocessing step.
|
||
|
After RD the algorithm is O (n m) in worst case and O(n log m) on average, where m < n
|
||
|
(m is the number of points after RD).
|
||
|
|
||
|
The DP algorithm starts with a simplification that is the single edge joining the first
|
||
|
and last vertices of the polyline. The distance of the remaining vertices to that edge
|
||
|
are computed. The vertex that is furthest away from theedge (called a key), and has a
|
||
|
computed distance that is larger than a specified tolerance, will be added to the
|
||
|
simplification. This process will recurse for each edge in the current simplification,
|
||
|
untill all vertices of the original polyline are within tolerance.
|
||
|
|
||
|
\image html psimpl_dp.png
|
||
|
|
||
|
Note that this algorithm will create a copy of the input polyline during the vertex
|
||
|
reduction step.
|
||
|
|
||
|
RD followed by DP is applied to the range [first, last) using the specified tolerance
|
||
|
tol. The resulting simplified polyline is copied to the output range
|
||
|
[result, result + m*DIM), where m is the number of vertices of the simplified polyline.
|
||
|
The return value is the end of the output range: result + m*DIM.
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The InputIterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains vertex coordinates in multiples of DIM, f.e.:
|
||
|
x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains at least 2 vertices
|
||
|
6- tol is not 0
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-segment) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator DouglasPeucker (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount < 3 || tol == 0) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
// radial distance routine as preprocessing
|
||
|
util::scoped_array <value_type> reduced (coordCount); // radial distance results
|
||
|
PolylineSimplification <DIM, InputIterator, value_type*> psimpl_to_array;
|
||
|
ptr_diff_type reducedCoordCount = std::distance (reduced.get (),
|
||
|
psimpl_to_array.RadialDistance (first, last, tol, reduced.get ()));
|
||
|
ptr_diff_type reducedPointCount = reducedCoordCount / DIM;
|
||
|
|
||
|
// douglas-peucker approximation
|
||
|
util::scoped_array <unsigned char> keys (pointCount); // douglas-peucker results
|
||
|
DPHelper::Approximate (reduced.get (), reducedCoordCount, tol, keys.get ());
|
||
|
|
||
|
// copy all keys
|
||
|
const value_type* current = reduced.get ();
|
||
|
for (ptr_diff_type p=0; p<reducedPointCount; ++p, current += DIM) {
|
||
|
if (keys [p]) {
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
*result = current [d];
|
||
|
++result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs a Douglas-Peucker approximation variant (DPn).
|
||
|
|
||
|
This algorithm is a variation of the original implementation. Instead of considering
|
||
|
one polyline segment at a time, all segments of the current simplified polyline are
|
||
|
evaluated at each step. Only the vertex with the maximum distance from its edge is
|
||
|
added to the simplification. This process will recurse untill the the simplification
|
||
|
contains the desired amount of vertices.
|
||
|
|
||
|
The algorithm, which does not use the (radial) distance between points routine as a
|
||
|
preprocessing step, is O(n2) in worst case and O(n log n) on average.
|
||
|
|
||
|
Note that this algorithm will create a copy of the input polyline for performance
|
||
|
reasons.
|
||
|
|
||
|
DPn is applied to the range [first, last). The resulting simplified polyline consists
|
||
|
of count vertices and is copied to the output range [result, result + count). The
|
||
|
return value is the end of the output range: result + count.
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The InputIterator value type is convertible to a value type of the output iterator
|
||
|
4- The range [first, last) contains vertex coordinates in multiples of DIM, f.e.:
|
||
|
x, y, z, x, y, z, x, y, z when DIM = 3
|
||
|
5- The range [first, last) contains a minimum of count vertices
|
||
|
6- count is at least 2
|
||
|
|
||
|
In case these requirements are not met, the entire input range [first, last) is copied
|
||
|
to the output range [result, result + (last - first)) OR compile errors may occur.
|
||
|
|
||
|
\sa DouglasPeucker
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] count the maximum number of points of the simplified polyline
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
OutputIterator DouglasPeuckerN (
|
||
|
InputIterator first,
|
||
|
InputIterator last,
|
||
|
unsigned count,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
diff_type coordCount = std::distance (first, last);
|
||
|
diff_type pointCount = DIM // protect against zero DIM
|
||
|
? coordCount / DIM
|
||
|
: 0;
|
||
|
// validate input and check if simplification required
|
||
|
if (coordCount % DIM || pointCount <= static_cast <diff_type> (count) || count < 2) {
|
||
|
return std::copy (first, last, result);
|
||
|
}
|
||
|
|
||
|
// copy coords
|
||
|
util::scoped_array <value_type> coords (coordCount);
|
||
|
for (ptr_diff_type c=0; c<coordCount; ++c) {
|
||
|
coords [c] = *first;
|
||
|
++first;
|
||
|
}
|
||
|
|
||
|
// douglas-peucker approximation
|
||
|
util::scoped_array <unsigned char> keys (pointCount);
|
||
|
DPHelper::ApproximateN (coords.get (), coordCount, count, keys.get ());
|
||
|
|
||
|
// copy keys
|
||
|
const value_type* current = coords.get ();
|
||
|
for (ptr_diff_type p=0; p<pointCount; ++p, current += DIM) {
|
||
|
if (keys [p]) {
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
*result = current [d];
|
||
|
++result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared positional error between a polyline and its simplification.
|
||
|
|
||
|
For each point in the range [original_first, original_last) the squared distance to the
|
||
|
simplification [simplified_first, simplified_last) is calculated. Each positional error
|
||
|
is copied to the output range [result, result + count), where count is the number of
|
||
|
points in the original polyline. The return value is the end of the output range:
|
||
|
result + count.
|
||
|
|
||
|
Note that both the original and simplified polyline must be defined using the same
|
||
|
value_type.
|
||
|
|
||
|
\image html psimpl_pos_error.png
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The InputIterator value type is convertible to a value type of the output iterator
|
||
|
4- The ranges [original_first, original_last) and [simplified_first, simplified_last)
|
||
|
contain vertex coordinates in multiples of DIM, f.e.: x, y, z, x, y, z, x, y, z
|
||
|
when DIM = 3
|
||
|
5- The ranges [original_first, original_last) and [simplified_first, simplified_last)
|
||
|
contain a minimum of 2 vertices
|
||
|
6- The range [simplified_first, simplified_last) represents a simplification of the
|
||
|
range [original_first, original_last), meaning each point in the simplification
|
||
|
has the exact same coordinates as some point from the original polyline
|
||
|
|
||
|
In case these requirements are not met, the valid flag is set to false OR
|
||
|
compile errors may occur.
|
||
|
|
||
|
\param[in] original_first the first coordinate of the first polyline point
|
||
|
\param[in] original_last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] simplified_first the first coordinate of the first simplified polyline point
|
||
|
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
|
||
|
\param[in] result destination of the squared positional errors
|
||
|
\param[out] valid [optional] indicates if the computed positional errors are valid
|
||
|
\return one beyond the last computed positional error
|
||
|
*/
|
||
|
OutputIterator ComputePositionalErrors2 (
|
||
|
InputIterator original_first,
|
||
|
InputIterator original_last,
|
||
|
InputIterator simplified_first,
|
||
|
InputIterator simplified_last,
|
||
|
OutputIterator result,
|
||
|
bool* valid=0)
|
||
|
{
|
||
|
diff_type original_coordCount = std::distance (original_first, original_last);
|
||
|
diff_type original_pointCount = DIM // protect against zero DIM
|
||
|
? original_coordCount / DIM
|
||
|
: 0;
|
||
|
|
||
|
diff_type simplified_coordCount = std::distance (simplified_first, simplified_last);
|
||
|
diff_type simplified_pointCount = DIM // protect against zero DIM
|
||
|
? simplified_coordCount / DIM
|
||
|
: 0;
|
||
|
|
||
|
// validate input
|
||
|
if (original_coordCount % DIM || original_pointCount < 2 ||
|
||
|
simplified_coordCount % DIM || simplified_pointCount < 2 ||
|
||
|
original_pointCount < simplified_pointCount ||
|
||
|
!math::equal <DIM> (original_first, simplified_first))
|
||
|
{
|
||
|
if (valid) {
|
||
|
*valid = false;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// define (simplified) line segment S(simplified_prev, simplified_first)
|
||
|
InputIterator simplified_prev = simplified_first;
|
||
|
std::advance (simplified_first, DIM);
|
||
|
|
||
|
// process each simplified line segment
|
||
|
while (simplified_first != simplified_last) {
|
||
|
// process each original point until it equals the end of the line segment
|
||
|
while (original_first != original_last &&
|
||
|
!math::equal <DIM> (original_first, simplified_first))
|
||
|
{
|
||
|
*result = math::segment_distance2 <DIM> (simplified_prev, simplified_first,
|
||
|
original_first);
|
||
|
++result;
|
||
|
std::advance (original_first, DIM);
|
||
|
}
|
||
|
// update line segment S
|
||
|
simplified_prev = simplified_first;
|
||
|
std::advance (simplified_first, DIM);
|
||
|
}
|
||
|
// check if last original point matched
|
||
|
if (original_first != original_last) {
|
||
|
*result = 0;
|
||
|
++result;
|
||
|
}
|
||
|
|
||
|
if (valid) {
|
||
|
*valid = original_first != original_last;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes statistics for the positional errors between a polyline and its simplification.
|
||
|
|
||
|
Various statistics (mean, max, sum, std) are calculated for the positional errors
|
||
|
between the range [original_first, original_last) and its simplification the range
|
||
|
[simplified_first, simplified_last).
|
||
|
|
||
|
Input (Type) requirements:
|
||
|
1- DIM is not 0, where DIM represents the dimension of the polyline
|
||
|
2- The InputIterator type models the concept of a forward iterator
|
||
|
3- The InputIterator value type is convertible to double
|
||
|
4- The ranges [original_first, original_last) and [simplified_first, simplified_last)
|
||
|
contain vertex coordinates in multiples of DIM, f.e.: x, y, z, x, y, z, x, y, z
|
||
|
when DIM = 3
|
||
|
5- The ranges [original_first, original_last) and [simplified_first, simplified_last)
|
||
|
contain a minimum of 2 vertices
|
||
|
6- The range [simplified_first, simplified_last) represents a simplification of the
|
||
|
range [original_first, original_last), meaning each point in the simplification
|
||
|
has the exact same coordinates as some point from the original polyline
|
||
|
|
||
|
In case these requirements are not met, the valid flag is set to false OR
|
||
|
compile errors may occur.
|
||
|
|
||
|
\sa ComputePositionalErrors2
|
||
|
|
||
|
\param[in] original_first the first coordinate of the first polyline point
|
||
|
\param[in] original_last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] simplified_first the first coordinate of the first simplified polyline point
|
||
|
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
|
||
|
\param[out] valid [optional] indicates if the computed statistics are valid
|
||
|
\return the computed statistics
|
||
|
*/
|
||
|
math::Statistics ComputePositionalErrorStatistics (
|
||
|
InputIterator original_first,
|
||
|
InputIterator original_last,
|
||
|
InputIterator simplified_first,
|
||
|
InputIterator simplified_last,
|
||
|
bool* valid=0)
|
||
|
{
|
||
|
diff_type pointCount = std::distance (original_first, original_last) / DIM;
|
||
|
util::scoped_array <double> errors (pointCount);
|
||
|
PolylineSimplification <DIM, InputIterator, double*> ps;
|
||
|
|
||
|
diff_type errorCount =
|
||
|
std::distance (
|
||
|
errors.get (),
|
||
|
ps.ComputePositionalErrors2 (original_first, original_last,
|
||
|
simplified_first, simplified_last,
|
||
|
errors.get (), valid));
|
||
|
|
||
|
std::transform (errors.get (), errors.get () + errorCount,
|
||
|
errors.get (),
|
||
|
std::ptr_fun <double, double> (std::sqrt));
|
||
|
|
||
|
return math::compute_statistics (errors.get (), errors.get () + errorCount);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/*!
|
||
|
\brief Copies the key to the output destination, and increments the iterator.
|
||
|
|
||
|
\sa CopyKey
|
||
|
|
||
|
\param[in,out] key the first coordinate of the key
|
||
|
\param[in,out] result destination of the copied key
|
||
|
*/
|
||
|
inline void CopyKeyAdvance (
|
||
|
InputIterator& key,
|
||
|
OutputIterator& result)
|
||
|
{
|
||
|
for (unsigned d = 0; d < DIM; ++d) {
|
||
|
*result = *key;
|
||
|
++result;
|
||
|
++key;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Copies the key to the output destination.
|
||
|
|
||
|
\sa CopyKeyAdvance
|
||
|
|
||
|
\param[in] key the first coordinate of the key
|
||
|
\param[in,out] result destination of the copied key
|
||
|
*/
|
||
|
inline void CopyKey (
|
||
|
InputIterator key,
|
||
|
OutputIterator& result)
|
||
|
{
|
||
|
CopyKeyAdvance (key, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Increments the iterator by n points.
|
||
|
|
||
|
\sa AdvanceCopy
|
||
|
|
||
|
\param[in,out] it iterator to be advanced
|
||
|
\param[in] n number of points to advance
|
||
|
*/
|
||
|
inline void Advance (
|
||
|
InputIterator& it,
|
||
|
diff_type n = 1)
|
||
|
{
|
||
|
std::advance (it, n * static_cast <diff_type> (DIM));
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Increments a copy of the iterator by n points.
|
||
|
|
||
|
\sa Advance
|
||
|
|
||
|
\param[in] it iterator to be advanced
|
||
|
\param[in] n number of points to advance
|
||
|
\return an incremented copy of the input iterator
|
||
|
*/
|
||
|
inline InputIterator AdvanceCopy (
|
||
|
InputIterator it,
|
||
|
diff_type n = 1)
|
||
|
{
|
||
|
Advance (it, n);
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Increments the iterator by n points if possible.
|
||
|
|
||
|
If there are fewer than n point remaining the iterator will be incremented to the last
|
||
|
point.
|
||
|
|
||
|
\sa Backward
|
||
|
|
||
|
\param[in,out] it iterator to be advanced
|
||
|
\param[in] n number of points to advance
|
||
|
\param[in,out] remaining number of points remaining after it
|
||
|
\return the actual amount of points that the iterator advanced
|
||
|
*/
|
||
|
inline unsigned Forward (
|
||
|
InputIterator& it,
|
||
|
unsigned n,
|
||
|
unsigned& remaining)
|
||
|
{
|
||
|
n = std::min (n, remaining);
|
||
|
Advance (it, n);
|
||
|
remaining -= n;
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Decrements the iterator by 1 point.
|
||
|
|
||
|
\sa Forward
|
||
|
|
||
|
\param[in,out] it iterator to be advanced
|
||
|
\param[in,out] remaining number of points remaining after it
|
||
|
*/
|
||
|
inline void Backward (
|
||
|
InputIterator& it,
|
||
|
unsigned& remaining)
|
||
|
{
|
||
|
Advance (it, -1);
|
||
|
++remaining;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/*!
|
||
|
\brief Douglas-Peucker approximation helper class.
|
||
|
|
||
|
Contains helper implentations for Douglas-Peucker approximation that operate solely on
|
||
|
value_type arrays and value_type pointers. Note that the PolylineSimplification
|
||
|
class only operates on iterators.
|
||
|
*/
|
||
|
class DPHelper
|
||
|
{
|
||
|
//! \brief Defines a sub polyline.
|
||
|
struct SubPoly {
|
||
|
SubPoly (ptr_diff_type first=0, ptr_diff_type last=0) :
|
||
|
first (first), last (last) {}
|
||
|
|
||
|
ptr_diff_type first; //! coord index of the first point
|
||
|
ptr_diff_type last; //! coord index of the last point
|
||
|
};
|
||
|
|
||
|
//! \brief Defines the key of a polyline.
|
||
|
struct KeyInfo {
|
||
|
KeyInfo (ptr_diff_type index=0, value_type dist2=0) :
|
||
|
index (index), dist2 (dist2) {}
|
||
|
|
||
|
ptr_diff_type index; //! coord index of the key
|
||
|
value_type dist2; //! squared distance of the key to a segment
|
||
|
};
|
||
|
|
||
|
//! \brief Defines a sub polyline including its key.
|
||
|
struct SubPolyAlt {
|
||
|
SubPolyAlt (ptr_diff_type first=0, ptr_diff_type last=0) :
|
||
|
first (first), last (last) {}
|
||
|
|
||
|
ptr_diff_type first; //! coord index of the first point
|
||
|
ptr_diff_type last; //! coord index of the last point
|
||
|
KeyInfo keyInfo; //! key of this sub poly
|
||
|
|
||
|
bool operator< (const SubPolyAlt& other) const {
|
||
|
return keyInfo.dist2 < other.keyInfo.dist2;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
\brief Performs Douglas-Peucker approximation.
|
||
|
|
||
|
\param[in] coords array of polyline coordinates
|
||
|
\param[in] coordCount number of coordinates in coords []
|
||
|
\param[in] tol approximation tolerance
|
||
|
\param[out] keys indicates for each polyline point if it is a key
|
||
|
*/
|
||
|
static void Approximate (
|
||
|
const value_type* coords,
|
||
|
ptr_diff_type coordCount,
|
||
|
value_type tol,
|
||
|
unsigned char* keys)
|
||
|
{
|
||
|
value_type tol2 = tol * tol; // squared distance tolerance
|
||
|
ptr_diff_type pointCount = coordCount / DIM;
|
||
|
// zero out keys
|
||
|
std::fill_n (keys, pointCount, 0);
|
||
|
keys [0] = 1; // the first point is always a key
|
||
|
keys [pointCount - 1] = 1; // the last point is always a key
|
||
|
|
||
|
typedef std::stack <SubPoly> Stack;
|
||
|
Stack stack; // LIFO job-queue containing sub-polylines
|
||
|
|
||
|
SubPoly subPoly (0, coordCount-DIM);
|
||
|
stack.push (subPoly); // add complete poly
|
||
|
|
||
|
while (!stack.empty ()) {
|
||
|
subPoly = stack.top (); // take a sub poly
|
||
|
stack.pop (); // and find its key
|
||
|
KeyInfo keyInfo = FindKey (coords, subPoly.first, subPoly.last);
|
||
|
if (keyInfo.index && tol2 < keyInfo.dist2) {
|
||
|
// store the key if valid
|
||
|
keys [keyInfo.index / DIM] = 1;
|
||
|
// split the polyline at the key and recurse
|
||
|
stack.push (SubPoly (keyInfo.index, subPoly.last));
|
||
|
stack.push (SubPoly (subPoly.first, keyInfo.index));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Douglas-Peucker approximation.
|
||
|
|
||
|
\param[in] coords array of polyline coordinates
|
||
|
\param[in] coordCount number of coordinates in coords []
|
||
|
\param[in] countTol point count tolerance
|
||
|
\param[out] keys indicates for each polyline point if it is a key
|
||
|
*/
|
||
|
static void ApproximateN (
|
||
|
const value_type* coords,
|
||
|
ptr_diff_type coordCount,
|
||
|
unsigned countTol,
|
||
|
unsigned char* keys)
|
||
|
{
|
||
|
ptr_diff_type pointCount = coordCount / DIM;
|
||
|
// zero out keys
|
||
|
std::fill_n (keys, pointCount, 0);
|
||
|
keys [0] = 1; // the first point is always a key
|
||
|
keys [pointCount - 1] = 1; // the last point is always a key
|
||
|
unsigned keyCount = 2;
|
||
|
|
||
|
if (countTol == 2) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
typedef std::priority_queue <SubPolyAlt> PriorityQueue;
|
||
|
PriorityQueue queue; // sorted (max dist2) job queue containing sub-polylines
|
||
|
|
||
|
SubPolyAlt subPoly (0, coordCount-DIM);
|
||
|
subPoly.keyInfo = FindKey (coords, subPoly.first, subPoly.last);
|
||
|
queue.push (subPoly); // add complete poly
|
||
|
|
||
|
while (!queue.empty ()) {
|
||
|
subPoly = queue.top (); // take a sub poly
|
||
|
queue.pop ();
|
||
|
// store the key
|
||
|
keys [subPoly.keyInfo.index / DIM] = 1;
|
||
|
// check point count tolerance
|
||
|
keyCount++;
|
||
|
if (keyCount == countTol) {
|
||
|
break;
|
||
|
}
|
||
|
// split the polyline at the key and recurse
|
||
|
SubPolyAlt left (subPoly.first, subPoly.keyInfo.index);
|
||
|
left.keyInfo = FindKey (coords, left.first, left.last);
|
||
|
if (left.keyInfo.index) {
|
||
|
queue.push (left);
|
||
|
}
|
||
|
SubPolyAlt right (subPoly.keyInfo.index, subPoly.last);
|
||
|
right.keyInfo = FindKey (coords, right.first, right.last);
|
||
|
if (right.keyInfo.index) {
|
||
|
queue.push (right);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/*!
|
||
|
\brief Finds the key for the given sub polyline.
|
||
|
|
||
|
Finds the point in the range [first, last] that is furthest away from the
|
||
|
segment (first, last). This point is called the key.
|
||
|
|
||
|
\param[in] coords array of polyline coordinates
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last the first coordinate of the last polyline point
|
||
|
\return the index of the key and its distance, or last when a key
|
||
|
could not be found
|
||
|
*/
|
||
|
static KeyInfo FindKey (
|
||
|
const value_type* coords,
|
||
|
ptr_diff_type first,
|
||
|
ptr_diff_type last)
|
||
|
{
|
||
|
KeyInfo keyInfo;
|
||
|
|
||
|
for (ptr_diff_type current = first + DIM; current < last; current += DIM) {
|
||
|
value_type d2 = math::segment_distance2 <DIM> (coords + first, coords + last,
|
||
|
coords + current);
|
||
|
if (d2 < keyInfo.dist2) {
|
||
|
continue;
|
||
|
}
|
||
|
// update maximum squared distance and the point it belongs to
|
||
|
keyInfo.index = current;
|
||
|
keyInfo.dist2 = d2;
|
||
|
}
|
||
|
return keyInfo;
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
\brief Performs the nth point routine (NP).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::NthPoint.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] n specifies 'each nth point'
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_nth_point (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
unsigned n,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.NthPoint (first, last, n, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs the (radial) distance between points routine (RD).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::RadialDistance.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol radial (point-to-point) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_radial_distance (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.RadialDistance (first, last, tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Repeatedly performs the perpendicular distance routine (PD).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::PerpendicularDistance.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (segment-to-point) distance tolerance
|
||
|
\param[in] repeat the number of times to successively apply the PD routine.
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_perpendicular_distance (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type tol,
|
||
|
unsigned repeat,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.PerpendicularDistance (first, last, tol, repeat, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs the perpendicular distance routine (PD).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::PerpendicularDistance.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (segment-to-point) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_perpendicular_distance (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.PerpendicularDistance (first, last, tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Reumann-Witkam polyline simplification (RW).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::ReumannWitkam.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-line) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_reumann_witkam (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.ReumannWitkam (first, last, tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Opheim polyline simplification (OP).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::Opheim.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] min_tol minimum distance tolerance
|
||
|
\param[in] max_tol maximum distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_opheim (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type min_tol,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type max_tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.Opheim (first, last, min_tol, max_tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Lang polyline simplification (LA).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::Lang.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-segment) distance tolerance
|
||
|
\param[in] look_ahead defines the size of the search region
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class BidirectionalIterator, class OutputIterator>
|
||
|
OutputIterator simplify_lang (
|
||
|
BidirectionalIterator first,
|
||
|
BidirectionalIterator last,
|
||
|
typename std::iterator_traits <BidirectionalIterator>::value_type tol,
|
||
|
unsigned look_ahead,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, BidirectionalIterator, OutputIterator> ps;
|
||
|
return ps.Lang (first, last, tol, look_ahead, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs Douglas-Peucker polyline simplification (DP).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::DouglasPeucker.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] tol perpendicular (point-to-segment) distance tolerance
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_douglas_peucker (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
typename std::iterator_traits <ForwardIterator>::value_type tol,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.DouglasPeucker (first, last, tol, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Performs a variant of Douglas-Peucker polyline simplification (DPn).
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::DouglasPeuckerAlt.
|
||
|
|
||
|
\param[in] first the first coordinate of the first polyline point
|
||
|
\param[in] last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] count the maximum number of points of the simplified polyline
|
||
|
\param[in] result destination of the simplified polyline
|
||
|
\return one beyond the last coordinate of the simplified polyline
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator simplify_douglas_peucker_n (
|
||
|
ForwardIterator first,
|
||
|
ForwardIterator last,
|
||
|
unsigned count,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.DouglasPeuckerN (first, last, count, result);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes the squared positional error between a polyline and its simplification.
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::ComputePositionalErrors2.
|
||
|
|
||
|
\param[in] original_first the first coordinate of the first polyline point
|
||
|
\param[in] original_last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] simplified_first the first coordinate of the first simplified polyline point
|
||
|
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
|
||
|
\param[in] result destination of the squared positional errors
|
||
|
\param[out] valid [optional] indicates if the computed positional errors are valid
|
||
|
\return one beyond the last computed positional error
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator compute_positional_errors2 (
|
||
|
ForwardIterator original_first,
|
||
|
ForwardIterator original_last,
|
||
|
ForwardIterator simplified_first,
|
||
|
ForwardIterator simplified_last,
|
||
|
OutputIterator result,
|
||
|
bool* valid=0)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, OutputIterator> ps;
|
||
|
return ps.ComputePositionalErrors2 (original_first, original_last, simplified_first, simplified_last, result, valid);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Computes statistics for the positional errors between a polyline and its simplification.
|
||
|
|
||
|
This is a convenience function that provides template type deduction for
|
||
|
PolylineSimplification::ComputePositionalErrorStatistics.
|
||
|
|
||
|
\param[in] original_first the first coordinate of the first polyline point
|
||
|
\param[in] original_last one beyond the last coordinate of the last polyline point
|
||
|
\param[in] simplified_first the first coordinate of the first simplified polyline point
|
||
|
\param[in] simplified_last one beyond the last coordinate of the last simplified polyline point
|
||
|
\param[out] valid [optional] indicates if the computed statistics are valid
|
||
|
\return the computed statistics
|
||
|
*/
|
||
|
template <unsigned DIM, class ForwardIterator>
|
||
|
math::Statistics compute_positional_error_statistics (
|
||
|
ForwardIterator original_first,
|
||
|
ForwardIterator original_last,
|
||
|
ForwardIterator simplified_first,
|
||
|
ForwardIterator simplified_last,
|
||
|
bool* valid=0)
|
||
|
{
|
||
|
PolylineSimplification <DIM, ForwardIterator, ForwardIterator> ps;
|
||
|
return ps.ComputePositionalErrorStatistics (original_first, original_last, simplified_first, simplified_last, valid);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // PSIMPL_GENERIC
|