/* temperature.c - temperature control Part of Marlin Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #include "ultralcd.h" #include "temperature.h" #include "watchdog.h" //=========================================================================== //=============================public variables============================ //=========================================================================== int target_raw[EXTRUDERS] = { 0 }; int target_raw_bed = 0; #ifdef BED_LIMIT_SWITCHING int target_bed_low_temp =0; int target_bed_high_temp =0; #endif int current_raw[EXTRUDERS] = { 0 }; int current_raw_bed = 0; #ifdef PIDTEMP // used external float pid_setpoint[EXTRUDERS] = { 0.0 }; float Kp=DEFAULT_Kp; float Ki=(DEFAULT_Ki*PID_dT); float Kd=(DEFAULT_Kd/PID_dT); #ifdef PID_ADD_EXTRUSION_RATE float Kc=DEFAULT_Kc; #endif #endif //PIDTEMP #ifdef PIDTEMPBED // used external float pid_setpoint_bed = { 0.0 }; float bedKp=DEFAULT_bedKp; float bedKi=(DEFAULT_bedKi*PID_dT); float bedKd=(DEFAULT_bedKd/PID_dT); #endif //PIDTEMPBED //=========================================================================== //=============================private variables============================ //=========================================================================== static volatile bool temp_meas_ready = false; #ifdef PIDTEMP //static cannot be external: static float temp_iState[EXTRUDERS] = { 0 }; static float temp_dState[EXTRUDERS] = { 0 }; static float pTerm[EXTRUDERS]; static float iTerm[EXTRUDERS]; static float dTerm[EXTRUDERS]; //int output; static float pid_error[EXTRUDERS]; static float temp_iState_min[EXTRUDERS]; static float temp_iState_max[EXTRUDERS]; // static float pid_input[EXTRUDERS]; // static float pid_output[EXTRUDERS]; static bool pid_reset[EXTRUDERS]; #endif //PIDTEMP #ifdef PIDTEMPBED //static cannot be external: static float temp_iState_bed = { 0 }; static float temp_dState_bed = { 0 }; static float pTerm_bed; static float iTerm_bed; static float dTerm_bed; //int output; static float pid_error_bed; static float temp_iState_min_bed; static float temp_iState_max_bed; #else //PIDTEMPBED static unsigned long previous_millis_bed_heater; #endif //PIDTEMPBED static unsigned char soft_pwm[EXTRUDERS]; static unsigned char soft_pwm_bed; #ifdef WATCHPERIOD int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all int watch_oldtemp[3] = {0,0,0}; unsigned long watchmillis = 0; #endif //WATCHPERIOD // Init min and max temp with extreme values to prevent false errors during startup static int minttemp[EXTRUDERS] = { 0 }; static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all static int bed_minttemp = 0; static int bed_maxttemp = 16383; static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable #if EXTRUDERS > 1 , (void *)heater_1_temptable #endif #if EXTRUDERS > 2 , (void *)heater_2_temptable #endif #if EXTRUDERS > 3 #error Unsupported number of extruders #endif }; static int heater_ttbllen_map[EXTRUDERS] = { heater_0_temptable_len #if EXTRUDERS > 1 , heater_1_temptable_len #endif #if EXTRUDERS > 2 , heater_2_temptable_len #endif #if EXTRUDERS > 3 #error Unsupported number of extruders #endif }; //=========================================================================== //============================= functions ============================ //=========================================================================== void PID_autotune(float temp, int extruder, int ncycles) { float input; int cycles=0; bool heating = true; unsigned long temp_millis = millis(); unsigned long t1=temp_millis; unsigned long t2=temp_millis; long t_high; long t_low; long bias, d; float Ku, Tu; float Kp, Ki, Kd; float max, min; if ((extruder > EXTRUDERS) #if (TEMP_BED_PIN <= -1) ||(extruder < 0) #endif ){ SERIAL_ECHOLN("PID Autotune failed. Bad extruder number."); return; } SERIAL_ECHOLN("PID Autotune start"); disable_heater(); // switch off all heaters. if (extruder<0) { soft_pwm_bed = (MAX_BED_POWER)/2; bias = d = (MAX_BED_POWER)/2; } else { soft_pwm[extruder] = (PID_MAX)/2; bias = d = (PID_MAX)/2; } for(;;) { if(temp_meas_ready == true) { // temp sample ready CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; input = (extruder<0)?analog2tempBed(current_raw_bed):analog2temp(current_raw[extruder], extruder); max=max(max,input); min=min(min,input); if(heating == true && input > temp) { if(millis() - t2 > 5000) { heating=false; if (extruder<0) soft_pwm_bed = (bias - d) >> 1; else soft_pwm[extruder] = (bias - d) >> 1; t1=millis(); t_high=t1 - t2; max=temp; } } if(heating == false && input < temp) { if(millis() - t1 > 5000) { heating=true; t2=millis(); t_low=t2 - t1; if(cycles > 0) { bias += (d*(t_high - t_low))/(t_low + t_high); bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20); if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias; else d = bias; SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); if(cycles > 2) { Ku = (4.0*d)/(3.14159*(max-min)/2.0); Tu = ((float)(t_low + t_high)/1000.0); SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); Kp = 0.6*Ku; Ki = 2*Kp/Tu; Kd = Kp*Tu/8; SERIAL_PROTOCOLLNPGM(" Clasic PID ") SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); /* Kp = 0.33*Ku; Ki = Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" Some overshoot ") SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); Kp = 0.2*Ku; Ki = 2*Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" No overshoot ") SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); */ } } if (extruder<0) soft_pwm_bed = (bias + d) >> 1; else soft_pwm[extruder] = (bias + d) >> 1; cycles++; min=temp; } } } if(input > (temp + 20)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high"); return; } if(millis() - temp_millis > 2000) { int p; if (extruder<0){ p=soft_pwm_bed; SERIAL_PROTOCOLPGM("ok B:"); }else{ p=soft_pwm[extruder]; SERIAL_PROTOCOLPGM("ok T:"); } SERIAL_PROTOCOL(input); SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLLN(p); temp_millis = millis(); } if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); return; } if(cycles > ncycles) { SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h"); return; } LCD_STATUS; } } void updatePID() { #ifdef PIDTEMP for(int e = 0; e < EXTRUDERS; e++) { temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; } #endif #ifdef PIDTEMPBED temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; #endif } int getHeaterPower(int heater) { if (heater<0) return soft_pwm_bed; return soft_pwm[heater]; } void manage_heater() { #ifdef USE_WATCHDOG wd_reset(); #endif float pid_input; float pid_output; if(temp_meas_ready != true) //better readability return; CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; for(int e = 0; e < EXTRUDERS; e++) { #ifdef PIDTEMP pid_input = analog2temp(current_raw[e], e); #ifndef PID_OPENLOOP pid_error[e] = pid_setpoint[e] - pid_input; if(pid_error[e] > 10) { pid_output = PID_MAX; pid_reset[e] = true; } else if(pid_error[e] < -10) { pid_output = 0; pid_reset[e] = true; } else { if(pid_reset[e] == true) { temp_iState[e] = 0.0; pid_reset[e] = false; } pTerm[e] = Kp * pid_error[e]; temp_iState[e] += pid_error[e]; temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); iTerm[e] = Ki * temp_iState[e]; //K1 defined in Configuration.h in the PID settings #define K2 (1.0-K1) dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); temp_dState[e] = pid_input; pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX); } #else pid_output = constrain(pid_setpoint[e], 0, PID_MAX); #endif //PID_OPENLOOP #ifdef PID_DEBUG SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]); #endif //PID_DEBUG #else /* PID off */ pid_output = 0; if(current_raw[e] < target_raw[e]) { pid_output = PID_MAX; } #endif // Check if temperature is within the correct range if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) { soft_pwm[e] = (int)pid_output >> 1; } else { soft_pwm[e] = 0; } } // End extruder for loop #ifdef WATCHPERIOD if(watchmillis && millis() - watchmillis > WATCHPERIOD){ if(watch_oldtemp[0] >= degHotend(active_extruder)){ setTargetHotend(0,active_extruder); LCD_MESSAGEPGM("Heating failed"); SERIAL_ECHO_START; SERIAL_ECHOLN("Heating failed"); }else{ watchmillis = 0; } } #endif #ifndef PIDTEMPBED if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) return; previous_millis_bed_heater = millis(); #endif #if TEMP_BED_PIN > -1 #ifdef PIDTEMPBED pid_input = analog2tempBed(current_raw_bed); #ifndef PID_OPENLOOP pid_error_bed = pid_setpoint_bed - pid_input; pTerm_bed = bedKp * pid_error_bed; temp_iState_bed += pid_error_bed; temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); iTerm_bed = bedKi * temp_iState_bed; //K1 defined in Configuration.h in the PID settings #define K2 (1.0-K1) dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed); temp_dState_bed = pid_input; pid_output = constrain(pTerm_bed + iTerm_bed - dTerm_bed, 0, MAX_BED_POWER); #else pid_output = constrain(pid_setpoint_bed, 0, MAX_BED_POWER); #endif //PID_OPENLOOP if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { soft_pwm_bed = (int)pid_output >> 1; } else { soft_pwm_bed = 0; } #elif not defined BED_LIMIT_SWITCHING // Check if temperature is within the correct range if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { if(current_raw_bed >= target_raw_bed) { soft_pwm_bed = 0; } else { soft_pwm_bed = MAX_BED_POWER>>1; } } else { soft_pwm_bed = 0; WRITE(HEATER_BED_PIN,LOW); } #else //#ifdef BED_LIMIT_SWITCHING // Check if temperature is within the correct band if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { if(current_raw_bed > target_bed_high_temp) { soft_pwm_bed = 0; } else if(current_raw_bed <= target_bed_low_temp) { soft_pwm_bed = MAX_BED_POWER>>1; } } else { soft_pwm_bed = 0; WRITE(HEATER_BED_PIN,LOW); } #endif #endif } #define PGM_RD_W(x) (short)pgm_read_word(&x) // Takes hot end temperature value as input and returns corresponding raw value. // For a thermistor, it uses the RepRap thermistor temp table. // This is needed because PID in hydra firmware hovers around a given analog value, not a temp value. // This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware. int temp2analog(int celsius, uint8_t e) { if(e >= EXTRUDERS) { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(" - Invalid extruder number!"); kill(); } #ifdef HEATER_0_USES_MAX6675 if (e == 0) { return celsius * 4; } #endif if(heater_ttbl_map[e] != 0) { int raw = 0; byte i; short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); for (i=1; i<heater_ttbllen_map[e]; i++) { if (PGM_RD_W((*tt)[i][1]) < celsius) { raw = PGM_RD_W((*tt)[i-1][0]) + (celsius - PGM_RD_W((*tt)[i-1][1])) * (PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])) / (PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) raw = PGM_RD_W((*tt)[i-1][0]); return (1023 * OVERSAMPLENR) - raw; } return ((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR; } // Takes bed temperature value as input and returns corresponding raw value. // For a thermistor, it uses the RepRap thermistor temp table. // This is needed because PID in hydra firmware hovers around a given analog value, not a temp value. // This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware. int temp2analogBed(int celsius) { #ifdef BED_USES_THERMISTOR int raw = 0; byte i; for (i=1; i<bedtemptable_len; i++) { if (PGM_RD_W(bedtemptable[i][1]) < celsius) { raw = PGM_RD_W(bedtemptable[i-1][0]) + (celsius - PGM_RD_W(bedtemptable[i-1][1])) * (PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) / (PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])); break; } } // Overflow: Set to last value in the table if (i == bedtemptable_len) raw = PGM_RD_W(bedtemptable[i-1][0]); return (1023 * OVERSAMPLENR) - raw; #elif defined BED_USES_AD595 return lround(((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) ); #else #warning No heater-type defined for the bed. return 0; #endif } // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. float analog2temp(int raw, uint8_t e) { if(e >= EXTRUDERS) { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(" - Invalid extruder number !"); kill(); } #ifdef HEATER_0_USES_MAX6675 if (e == 0) { return 0.25 * raw; } #endif if(heater_ttbl_map[e] != 0) { float celsius = 0; byte i; short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); raw = (1023 * OVERSAMPLENR) - raw; for (i=1; i<heater_ttbllen_map[e]; i++) { if (PGM_RD_W((*tt)[i][0]) > raw) { celsius = PGM_RD_W((*tt)[i-1][1]) + (raw - PGM_RD_W((*tt)[i-1][0])) * (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) / (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]); return celsius; } return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; } // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. float analog2tempBed(int raw) { #ifdef BED_USES_THERMISTOR float celsius = 0; byte i; raw = (1023 * OVERSAMPLENR) - raw; for (i=1; i<bedtemptable_len; i++) { if (PGM_RD_W(bedtemptable[i][0]) > raw) { celsius = PGM_RD_W(bedtemptable[i-1][1]) + (raw - PGM_RD_W(bedtemptable[i-1][0])) * (float)(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) / (float)(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == bedtemptable_len) celsius = PGM_RD_W(bedtemptable[i-1][1]); return celsius; #elif defined BED_USES_AD595 return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; #else #warning No heater-type defined for the bed. return 0; #endif } void tp_init() { // Finish init of mult extruder arrays for(int e = 0; e < EXTRUDERS; e++) { // populate with the first value #ifdef WATCHPERIOD watch_raw[e] = watch_raw[0]; #endif maxttemp[e] = maxttemp[0]; #ifdef PIDTEMP temp_iState_min[e] = 0.0; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; #endif //PIDTEMP #ifdef PIDTEMPBED temp_iState_min_bed = 0.0; temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; #endif //PIDTEMPBED } #if (HEATER_0_PIN > -1) SET_OUTPUT(HEATER_0_PIN); #endif #if (HEATER_1_PIN > -1) SET_OUTPUT(HEATER_1_PIN); #endif #if (HEATER_2_PIN > -1) SET_OUTPUT(HEATER_2_PIN); #endif #if (HEATER_BED_PIN > -1) SET_OUTPUT(HEATER_BED_PIN); #endif #if (FAN_PIN > -1) SET_OUTPUT(FAN_PIN); #ifdef FAST_PWM_FAN setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #endif #ifdef HEATER_0_USES_MAX6675 #ifndef SDSUPPORT SET_OUTPUT(MAX_SCK_PIN); WRITE(MAX_SCK_PIN,0); SET_OUTPUT(MAX_MOSI_PIN); WRITE(MAX_MOSI_PIN,1); SET_INPUT(MAX_MISO_PIN); WRITE(MAX_MISO_PIN,1); #endif SET_OUTPUT(MAX6675_SS); WRITE(MAX6675_SS,1); #endif // Set analog inputs ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif #if (TEMP_0_PIN > -1) #if TEMP_0_PIN < 8 DIDR0 |= 1 << TEMP_0_PIN; #else DIDR2 |= 1<<(TEMP_0_PIN - 8); #endif #endif #if (TEMP_1_PIN > -1) #if TEMP_1_PIN < 8 DIDR0 |= 1<<TEMP_1_PIN; #else DIDR2 |= 1<<(TEMP_1_PIN - 8); #endif #endif #if (TEMP_2_PIN > -1) #if TEMP_2_PIN < 8 DIDR0 |= 1 << TEMP_2_PIN; #else DIDR2 = 1<<(TEMP_2_PIN - 8); #endif #endif #if (TEMP_BED_PIN > -1) #if TEMP_BED_PIN < 8 DIDR0 |= 1<<TEMP_BED_PIN; #else DIDR2 |= 1<<(TEMP_BED_PIN - 8); #endif #endif // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0B = 128; TIMSK0 |= (1<<OCIE0B); // Wait for temperature measurement to settle delay(250); #ifdef HEATER_0_MINTEMP minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0); #endif //MINTEMP #ifdef HEATER_0_MAXTEMP maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0); #endif //MAXTEMP #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP) minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1); #endif // MINTEMP 1 #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP) maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1); #endif //MAXTEMP 1 #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP) minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2); #endif //MINTEMP 2 #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP) maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2); #endif //MAXTEMP 2 #ifdef BED_MINTEMP bed_minttemp = temp2analogBed(BED_MINTEMP); #endif //BED_MINTEMP #ifdef BED_MAXTEMP bed_maxttemp = temp2analogBed(BED_MAXTEMP); #endif //BED_MAXTEMP } void setWatch() { #ifdef WATCHPERIOD int t = 0; for (int e = 0; e < EXTRUDERS; e++) { if(isHeatingHotend(e)) watch_oldtemp[0] = degHotend(0); { t = max(t,millis()); watch_raw[e] = current_raw[e]; } } watchmillis = t; #endif } void disable_heater() { for(int i=0;i<EXTRUDERS;i++) setTargetHotend(0,i); setTargetBed(0); #if TEMP_0_PIN > -1 target_raw[0]=0; soft_pwm[0]=0; #if HEATER_0_PIN > -1 WRITE(HEATER_0_PIN,LOW); #endif #endif #if TEMP_1_PIN > -1 target_raw[1]=0; soft_pwm[1]=0; #if HEATER_1_PIN > -1 WRITE(HEATER_1_PIN,LOW); #endif #endif #if TEMP_2_PIN > -1 target_raw[2]=0; soft_pwm[2]=0; #if HEATER_2_PIN > -1 WRITE(HEATER_2_PIN,LOW); #endif #endif #if TEMP_BED_PIN > -1 target_raw_bed=0; soft_pwm_bed=0; #if HEATER_BED_PIN > -1 WRITE(HEATER_BED_PIN,LOW); #endif #endif } void max_temp_error(uint8_t e) { disable_heater(); if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); } } void min_temp_error(uint8_t e) { disable_heater(); if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); } } void bed_max_temp_error(void) { #if HEATER_BED_PIN > -1 WRITE(HEATER_BED_PIN, 0); #endif if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!"); } } #define HEAT_INTERVAL 250 #ifdef HEATER_0_USES_MAX6675 long max6675_previous_millis = -HEAT_INTERVAL; int max6675_temp = 2000; int read_max6675() { if (millis() - max6675_previous_millis < HEAT_INTERVAL) return max6675_temp; max6675_previous_millis = millis(); max6675_temp = 0; #ifdef PRR PRR &= ~(1<<PRSPI); #elif defined PRR0 PRR0 &= ~(1<<PRSPI); #endif SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); // enable TT_MAX6675 WRITE(MAX6675_SS, 0); // ensure 100ns delay - a bit extra is fine delay(1); // read MSB SPDR = 0; for (;(SPSR & (1<<SPIF)) == 0;); max6675_temp = SPDR; max6675_temp <<= 8; // read LSB SPDR = 0; for (;(SPSR & (1<<SPIF)) == 0;); max6675_temp |= SPDR; // disable TT_MAX6675 WRITE(MAX6675_SS, 1); if (max6675_temp & 4) { // thermocouple open max6675_temp = 2000; } else { max6675_temp = max6675_temp >> 3; } return max6675_temp; } #endif // Timer 0 is shared with millies ISR(TIMER0_COMPB_vect) { //these variables are only accesible from the ISR, but static, so they don't loose their value static unsigned char temp_count = 0; static unsigned long raw_temp_0_value = 0; static unsigned long raw_temp_1_value = 0; static unsigned long raw_temp_2_value = 0; static unsigned long raw_temp_bed_value = 0; static unsigned char temp_state = 0; static unsigned char pwm_count = 1; static unsigned char soft_pwm_0; static unsigned char soft_pwm_1; static unsigned char soft_pwm_2; static unsigned char soft_pwm_b; if(pwm_count == 0){ soft_pwm_0 = soft_pwm[0]; if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1); #if EXTRUDERS > 1 soft_pwm_1 = soft_pwm[1]; if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); #endif #if EXTRUDERS > 2 soft_pwm_2 = soft_pwm[2]; if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); #endif #if HEATER_BED_PIN > -1 soft_pwm_b = soft_pwm_bed; if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); #endif } if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0); #if EXTRUDERS > 1 if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0); #endif #if EXTRUDERS > 2 if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0); #endif #if HEATER_BED_PIN > -1 if(soft_pwm_b <= pwm_count) WRITE(HEATER_BED_PIN,0); #endif pwm_count++; pwm_count &= 0x7f; switch(temp_state) { case 0: // Prepare TEMP_0 #if (TEMP_0_PIN > -1) #if TEMP_0_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 1; break; case 1: // Measure TEMP_0 #if (TEMP_0_PIN > -1) raw_temp_0_value += ADC; #endif #ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking raw_temp_0_value = read_max6675(); #endif temp_state = 2; break; case 2: // Prepare TEMP_BED #if (TEMP_BED_PIN > -1) #if TEMP_BED_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 3; break; case 3: // Measure TEMP_BED #if (TEMP_BED_PIN > -1) raw_temp_bed_value += ADC; #endif temp_state = 4; break; case 4: // Prepare TEMP_1 #if (TEMP_1_PIN > -1) #if TEMP_1_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 5; break; case 5: // Measure TEMP_1 #if (TEMP_1_PIN > -1) raw_temp_1_value += ADC; #endif temp_state = 6; break; case 6: // Prepare TEMP_2 #if (TEMP_2_PIN > -1) #if TEMP_2_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 7; break; case 7: // Measure TEMP_2 #if (TEMP_2_PIN > -1) raw_temp_2_value += ADC; #endif temp_state = 0; temp_count++; break; // default: // SERIAL_ERROR_START; // SERIAL_ERRORLNPGM("Temp measurement error!"); // break; } if(temp_count >= 16) // 8 ms * 16 = 128ms. { #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675) current_raw[0] = raw_temp_0_value; #else current_raw[0] = 16383 - raw_temp_0_value; #endif #if EXTRUDERS > 1 #ifdef HEATER_1_USES_AD595 current_raw[1] = raw_temp_1_value; #else current_raw[1] = 16383 - raw_temp_1_value; #endif #endif #if EXTRUDERS > 2 #ifdef HEATER_2_USES_AD595 current_raw[2] = raw_temp_2_value; #else current_raw[2] = 16383 - raw_temp_2_value; #endif #endif #ifdef BED_USES_AD595 current_raw_bed = raw_temp_bed_value; #else current_raw_bed = 16383 - raw_temp_bed_value; #endif temp_meas_ready = true; temp_count = 0; raw_temp_0_value = 0; raw_temp_1_value = 0; raw_temp_2_value = 0; raw_temp_bed_value = 0; for(unsigned char e = 0; e < EXTRUDERS; e++) { if(current_raw[e] >= maxttemp[e]) { target_raw[e] = 0; max_temp_error(e); #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE { Stop();; } #endif } if(current_raw[e] <= minttemp[e]) { target_raw[e] = 0; min_temp_error(e); #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE { Stop(); } #endif } } #if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1) if(current_raw_bed >= bed_maxttemp) { target_raw_bed = 0; bed_max_temp_error(); Stop(); } #endif } }