/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers        */
/*                                                        */
/* tested with ATmega8, ATmega128 and ATmega168           */
/* should work with other mega's, see code for details    */
/*                                                        */
/* ATmegaBOOT.c                                           */
/*                                                        */
/*                                                        */
/* 20090308: integrated Mega changes into main bootloader */
/*           source by D. Mellis                          */
/* 20080930: hacked for Arduino Mega (with the 1280       */
/*           processor, backwards compatible)             */
/*           by D. Cuartielles                            */
/* 20070626: hacked for Arduino Diecimila (which auto-    */
/*           resets when a USB connection is made to it)  */
/*           by D. Mellis                                 */
/* 20060802: hacked for Arduino by D. Cuartielles         */
/*           based on a previous hack by D. Mellis        */
/*           and D. Cuartielles                           */
/*                                                        */
/* Monitor and debug functions were added to the original */
/* code by Dr. Erik Lins, chip45.com. (See below)         */
/*                                                        */
/* Thanks to Karl Pitrich for fixing a bootloader pin     */
/* problem and more informative LED blinking!             */
/*                                                        */
/* For the latest version see:                            */
/* http://www.chip45.com/                                 */
/*                                                        */
/* ------------------------------------------------------ */
/*                                                        */
/* based on stk500boot.c                                  */
/* Copyright (c) 2003, Jason P. Kyle                      */
/* All rights reserved.                                   */
/* see avr1.org for original file and information         */
/*                                                        */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General    */
/* Public License as published by the Free Software       */
/* Foundation; either version 2 of the License, or        */
/* (at your option) any later version.                    */
/*                                                        */
/* This program is distributed in the hope that it will   */
/* be useful, but WITHOUT ANY WARRANTY; without even the  */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A   */
/* PARTICULAR PURPOSE.  See the GNU General Public        */
/* License for more details.                              */
/*                                                        */
/* You should have received a copy of the GNU General     */
/* Public License along with this program; if not, write  */
/* to the Free Software Foundation, Inc.,                 */
/* 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA */
/*                                                        */
/* Licence can be viewed at                               */
/* http://www.fsf.org/licenses/gpl.txt                    */
/*                                                        */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so  */
/* isn't supported.                                       */
/*                                                        */
/* Tested with m168                                       */
/**********************************************************/

/* $Id$ */


/* some includes */
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>

/* the current avr-libc eeprom functions do not support the ATmega168 */
/* own eeprom write/read functions are used instead */
#if !defined(__AVR_ATmega168__) || !defined(__AVR_ATmega328P__)
#include <avr/eeprom.h>
#endif

/* Use the F_CPU defined in Makefile */

/* 20060803: hacked by DojoCorp */
/* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */
/* set the waiting time for the bootloader */
/* get this from the Makefile instead */
/* #define MAX_TIME_COUNT (F_CPU>>4) */

/* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */
#define MAX_ERROR_COUNT 5
#define NUM_LED_FLASHES 3
/* set the UART baud rate */
/* 20060803: hacked by DojoCorp */
//#define BAUD_RATE   115200
#ifndef BAUD_RATE
#define BAUD_RATE   19200
#endif


/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
/* never allow AVR Studio to do an update !!!! */
#define HW_VER	 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10


/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
/* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */
/* ATmega1280 has four UARTS, but for Arduino Mega, we will only use RXD0 to get code */
/* BL0... means UART0, BL1... means UART1 */
#ifdef __AVR_ATmega128__
#define BL_DDR  DDRF
#define BL_PORT PORTF
#define BL_PIN  PINF
#define BL0     PINF7
#define BL1     PINF6
#elif defined __AVR_ATmega1280__
/* we just don't do anything for the MEGA and enter bootloader on reset anyway*/
#elif defined __AVR_ATmega1284P__

#else
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR  DDRD
#define BL_PORT PORTD
#define BL_PIN  PIND
#define BL      PIND6
#endif


/* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */
/* if monitor functions are included, LED goes on after monitor was entered */
#if defined __AVR_ATmega128__ || defined __AVR_ATmega1280__
/* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128, Arduino Mega) */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB7
#elif defined __AVR_ATmega1284P__
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB0
#else
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duomilanuove */
/* other boards like e.g. Crumb8, Crumb168 are using PB2 */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB5
#endif


/* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
//#define MONITOR 1
#endif
#undef MONITOR

/* define various device id's */
/* manufacturer byte is always the same */
#define SIG1	0x1E	// Yep, Atmel is the only manufacturer of AVR micros.  Single source :(

#if defined __AVR_ATmega1280__
#define SIG2	0x97
#define SIG3	0x03
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega1284P__
#define SIG2	0x97
#define SIG3	0x05
#define PAGE_SIZE	0x080U   //128 words

#elif defined __AVR_ATmega1281__
#define SIG2	0x97
#define SIG3	0x04
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega128__
#define SIG2	0x97
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega64__
#define SIG2	0x96
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega32__
#define SIG2	0x95
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega16__
#define SIG2	0x94
#define SIG3	0x03
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega8__
#define SIG2	0x93
#define SIG3	0x07
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega88__
#define SIG2	0x93
#define SIG3	0x0a
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega168__
#define SIG2	0x94
#define SIG3	0x06
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega328P__
#define SIG2	0x95
#define SIG3	0x0F
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega162__
#define SIG2	0x94
#define SIG3	0x04
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega163__
#define SIG2	0x94
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega169__
#define SIG2	0x94
#define SIG3	0x05
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega8515__
#define SIG2	0x93
#define SIG3	0x06
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega8535__
#define SIG2	0x93
#define SIG3	0x08
#define PAGE_SIZE	0x20U	//32 words
#endif


/* function prototypes */
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
void flash_led(uint8_t);

/* some variables */
union address_union
{
  uint16_t word;
  uint8_t  byte[2];
} address;

union length_union
{
  uint16_t word;
  uint8_t  byte[2];
} length;

struct flags_struct
{
  unsigned eeprom : 1;
  unsigned rampz  : 1;
} flags;

uint8_t buff[256];
uint8_t address_high;


uint8_t i;
uint8_t bootuart = 0;

uint8_t error_count = 0;

void (*app_start)(void) = 0x0000;


/* main program starts here */
int main(void)
{
  uint8_t ch,ch2;
  uint16_t w;
#ifdef WATCHDOG_MODS
  ch = MCUSR;
  MCUSR = 0;
  WDTCSR |= _BV(WDCE) | _BV(WDE);
  WDTCSR = 0;
  // Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
  if (! (ch &  _BV(EXTRF))) // if its a not an external reset...
    app_start();  // skip bootloader
#else
  asm volatile("nop\n\t");
#endif
  /* set pin direction for bootloader pin and enable pullup */
  /* for ATmega128, two pins need to be initialized */
#ifdef __AVR_ATmega128__
  BL_DDR &= ~_BV(BL0);
  BL_DDR &= ~_BV(BL1);
  BL_PORT |= _BV(BL0);
  BL_PORT |= _BV(BL1);
#else
  /* We run the bootloader regardless of the state of this pin.  Thus, don't
  put it in a different state than the other pins.  --DAM, 070709
  This also applies to Arduino Mega -- DC, 080930
  BL_DDR &= ~_BV(BL);
  BL_PORT |= _BV(BL);
  */
#endif
#ifdef __AVR_ATmega128__
  /* check which UART should be used for booting */
  if(bit_is_clear(BL_PIN, BL0))
  {
    bootuart = 1;
  }
  else if(bit_is_clear(BL_PIN, BL1))
  {
    bootuart = 2;
  }
#endif
#if defined __AVR_ATmega1280__  || defined __AVR_ATmega1284P__
  /* the mega1280 chip has four serial ports ... we could eventually use any of them, or not? */
  /* however, we don't wanna confuse people, to avoid making a mess, we will stick to RXD0, TXD0 */
  bootuart = 1;
#endif
  /* check if flash is programmed already, if not start bootloader anyway */
  if(pgm_read_byte_near(0x0000) != 0xFF)
  {
#ifdef __AVR_ATmega128__
    /* no UART was selected, start application */
    if(!bootuart)
    {
      app_start();
    }
#else
    /* check if bootloader pin is set low */
    /* we don't start this part neither for the m8, nor m168 */
    //if(bit_is_set(BL_PIN, BL)) {
    //      app_start();
    //    }
#endif
  }
#ifdef __AVR_ATmega128__
  /* no bootuart was selected, default to uart 0 */
  if(!bootuart)
  {
    bootuart = 1;
  }
#endif
  /* initialize UART(s) depending on CPU defined */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)  || defined(__AVR_ATmega1284P__)
  if(bootuart == 1)
  {
    UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
    UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
    UCSR0A = 0x00;
    UCSR0C = 0x06;
    UCSR0B = _BV(TXEN0)|_BV(RXEN0);
  }
  if(bootuart == 2)
  {
    UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
    UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
    UCSR1A = 0x00;
    UCSR1C = 0x06;
    UCSR1B = _BV(TXEN1)|_BV(RXEN1);
  }
#elif defined __AVR_ATmega163__
  UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
  UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
  UCSRA = 0x00;
  UCSRB = _BV(TXEN)|_BV(RXEN);
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
#ifdef DOUBLE_SPEED
  UCSR0A = (1<<U2X0); //Double speed mode USART0
  UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*8L)-1);
  UBRR0H = (F_CPU/(BAUD_RATE*8L)-1) >> 8;
#else
  UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
  UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
#endif
  UCSR0B = (1<<RXEN0) | (1<<TXEN0);
  UCSR0C = (1<<UCSZ00) | (1<<UCSZ01);
  /* Enable internal pull-up resistor on pin D0 (RX), in order
  to supress line noise that prevents the bootloader from
  timing out (DAM: 20070509) */
  DDRD &= ~_BV(PIND0);
  PORTD |= _BV(PIND0);
#elif defined __AVR_ATmega8__
  /* m8 */
  UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; 	// set baud rate
  UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
  UCSRB = (1<<RXEN)|(1<<TXEN);  // enable Rx & Tx
  UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);  // config USART; 8N1
#else
  /* m16,m32,m169,m8515,m8535 */
  UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
  UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
  UCSRA = 0x00;
  UCSRC = 0x06;
  UCSRB = _BV(TXEN)|_BV(RXEN);
#endif
#if defined __AVR_ATmega1280__
  /* Enable internal pull-up resistor on pin D0 (RX), in order
  to supress line noise that prevents the bootloader from
  timing out (DAM: 20070509) */
  /* feature added to the Arduino Mega --DC: 080930 */
  DDRE &= ~_BV(PINE0);
  PORTE |= _BV(PINE0);
#endif
  /* set LED pin as output */
  LED_DDR |= _BV(LED);
  /* flash onboard LED to signal entering of bootloader */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
  // 4x for UART0, 5x for UART1
  flash_led(NUM_LED_FLASHES + bootuart);
#else
  flash_led(NUM_LED_FLASHES);
#endif
  /* 20050803: by DojoCorp, this is one of the parts provoking the
  	 system to stop listening, cancelled from the original */
  //putch('\0');
  /* forever loop */
  for (;;)
  {
    /* get character from UART */
    ch = getch();
    /* A bunch of if...else if... gives smaller code than switch...case ! */
    /* Hello is anyone home ? */
    if(ch=='0')
    {
      nothing_response();
    }
    /* Request programmer ID */
    /* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry  */
    /* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares.  */
    else if(ch=='1')
    {
      if (getch() == ' ')
      {
        putch(0x14);
        putch('A');
        putch('V');
        putch('R');
        putch(' ');
        putch('I');
        putch('S');
        putch('P');
        putch(0x10);
      }
      else
      {
        if (++error_count == MAX_ERROR_COUNT)
          app_start();
      }
    }
    /* AVR ISP/STK500 board commands  DON'T CARE so default nothing_response */
    else if(ch=='@')
    {
      ch2 = getch();
      if (ch2>0x85) getch();
      nothing_response();
    }
    /* AVR ISP/STK500 board requests */
    else if(ch=='A')
    {
      ch2 = getch();
      if(ch2==0x80) byte_response(HW_VER);		// Hardware version
      else if(ch2==0x81) byte_response(SW_MAJOR);	// Software major version
      else if(ch2==0x82) byte_response(SW_MINOR);	// Software minor version
      else if(ch2==0x98) byte_response(0x03);		// Unknown but seems to be required by avr studio 3.56
      else byte_response(0x00);				// Covers various unnecessary responses we don't care about
    }
    /* Device Parameters  DON'T CARE, DEVICE IS FIXED  */
    else if(ch=='B')
    {
      getNch(20);
      nothing_response();
    }
    /* Parallel programming stuff  DON'T CARE  */
    else if(ch=='E')
    {
      getNch(5);
      nothing_response();
    }
    /* P: Enter programming mode  */
    /* R: Erase device, don't care as we will erase one page at a time anyway.  */
    else if(ch=='P' || ch=='R')
    {
      nothing_response();
    }
    /* Leave programming mode  */
    else if(ch=='Q')
    {
      nothing_response();
#ifdef WATCHDOG_MODS
      // autoreset via watchdog (sneaky!)
      WDTCSR = _BV(WDE);
      while (1); // 16 ms
#endif
    }
    /* Set address, little endian. EEPROM in bytes, FLASH in words  */
    /* Perhaps extra address bytes may be added in future to support > 128kB FLASH.  */
    /* This might explain why little endian was used here, big endian used everywhere else.  */
    else if(ch=='U')
    {
      address.byte[0] = getch();
      address.byte[1] = getch();
      nothing_response();
    }
    /* Universal SPI programming command, disabled.  Would be used for fuses and lock bits.  */
    else if(ch=='V')
    {
      if (getch() == 0x30)
      {
        getch();
        ch = getch();
        getch();
        if (ch == 0)
        {
          byte_response(SIG1);
        }
        else if (ch == 1)
        {
          byte_response(SIG2);
        }
        else
        {
          byte_response(SIG3);
        }
      }
      else
      {
        getNch(3);
        byte_response(0x00);
      }
    }
    /* Write memory, length is big endian and is in bytes  */
    else if(ch=='d')
    {
      length.byte[1] = getch();
      length.byte[0] = getch();
      flags.eeprom = 0;
      if (getch() == 'E') flags.eeprom = 1;
      for (w=0; w<length.word; w++)
      {
        buff[w] = getch();	                        // Store data in buffer, can't keep up with serial data stream whilst programming pages
      }
      if (getch() == ' ')
      {
        if (flags.eeprom)  		                //Write to EEPROM one byte at a time
        {
          address.word <<= 1;
          for(w=0; w<length.word; w++)
          {
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
            while(EECR & (1<<EEPE));
            EEAR = (uint16_t)(void *)address.word;
            EEDR = buff[w];
            EECR |= (1<<EEMPE);
            EECR |= (1<<EEPE);
#else
            eeprom_write_byte((void *)address.word,buff[w]);
#endif
            address.word++;
          }
        }
        else  					        //Write to FLASH one page at a time
        {
          if (address.byte[1]>127) address_high = 0x01;	//Only possible with m128, m256 will need 3rd address byte. FIXME
          else address_high = 0x00;
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__)
          RAMPZ = address_high;
#endif
          address.word = address.word << 1;	        //address * 2 -> byte location
          /* if ((length.byte[0] & 0x01) == 0x01) length.word++;	//Even up an odd number of bytes */
          if ((length.byte[0] & 0x01)) length.word++;	//Even up an odd number of bytes
          cli();					//Disable interrupts, just to be sure
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__)
          while(bit_is_set(EECR,EEPE));			//Wait for previous EEPROM writes to complete
#else
          while(bit_is_set(EECR,EEWE));			//Wait for previous EEPROM writes to complete
#endif
          asm volatile(
            "clr	r17		\n\t"	//page_word_count
            "lds	r30,address	\n\t"	//Address of FLASH location (in bytes)
            "lds	r31,address+1	\n\t"
            "ldi	r28,lo8(buff)	\n\t"	//Start of buffer array in RAM
            "ldi	r29,hi8(buff)	\n\t"
            "lds	r24,length	\n\t"	//Length of data to be written (in bytes)
            "lds	r25,length+1	\n\t"
            "length_loop:		\n\t"	//Main loop, repeat for number of words in block
            "cpi	r17,0x00	\n\t"	//If page_word_count=0 then erase page
            "brne	no_page_erase	\n\t"
            "wait_spm1:		\n\t"
            "lds	r16,%0		\n\t"	//Wait for previous spm to complete
            "andi	r16,1           \n\t"
            "cpi	r16,1           \n\t"
            "breq	wait_spm1       \n\t"
            "ldi	r16,0x03	\n\t"	//Erase page pointed to by Z
            "sts	%0,r16		\n\t"
            "spm			\n\t"
#ifdef __AVR_ATmega163__
            ".word 0xFFFF		\n\t"
            "nop			\n\t"
#endif
            "wait_spm2:		\n\t"
            "lds	r16,%0		\n\t"	//Wait for previous spm to complete
            "andi	r16,1           \n\t"
            "cpi	r16,1           \n\t"
            "breq	wait_spm2       \n\t"
            "ldi	r16,0x11	\n\t"	//Re-enable RWW section
            "sts	%0,r16		\n\t"
            "spm			\n\t"
#ifdef __AVR_ATmega163__
            ".word 0xFFFF		\n\t"
            "nop			\n\t"
#endif
            "no_page_erase:		\n\t"
            "ld	r0,Y+		\n\t"	//Write 2 bytes into page buffer
            "ld	r1,Y+		\n\t"
            "wait_spm3:		\n\t"
            "lds	r16,%0		\n\t"	//Wait for previous spm to complete
            "andi	r16,1           \n\t"
            "cpi	r16,1           \n\t"
            "breq	wait_spm3       \n\t"
            "ldi	r16,0x01	\n\t"	//Load r0,r1 into FLASH page buffer
            "sts	%0,r16		\n\t"
            "spm			\n\t"
            "inc	r17		\n\t"	//page_word_count++
            "cpi r17,%1	        \n\t"
            "brlo	same_page	\n\t"	//Still same page in FLASH
            "write_page:		\n\t"
            "clr	r17		\n\t"	//New page, write current one first
            "wait_spm4:		\n\t"
            "lds	r16,%0		\n\t"	//Wait for previous spm to complete
            "andi	r16,1           \n\t"
            "cpi	r16,1           \n\t"
            "breq	wait_spm4       \n\t"
#ifdef __AVR_ATmega163__
            "andi	r30,0x80	\n\t"	// m163 requires Z6:Z1 to be zero during page write
#endif
            "ldi	r16,0x05	\n\t"	//Write page pointed to by Z
            "sts	%0,r16		\n\t"
            "spm			\n\t"
#ifdef __AVR_ATmega163__
            ".word 0xFFFF		\n\t"
            "nop			\n\t"
            "ori	r30,0x7E	\n\t"	// recover Z6:Z1 state after page write (had to be zero during write)
#endif
            "wait_spm5:		\n\t"
            "lds	r16,%0		\n\t"	//Wait for previous spm to complete
            "andi	r16,1           \n\t"
            "cpi	r16,1           \n\t"
            "breq	wait_spm5       \n\t"
            "ldi	r16,0x11	\n\t"	//Re-enable RWW section
            "sts	%0,r16		\n\t"
            "spm			\n\t"
#ifdef __AVR_ATmega163__
            ".word 0xFFFF		\n\t"
            "nop			\n\t"
#endif
            "same_page:		\n\t"
            "adiw	r30,2		\n\t"	//Next word in FLASH
            "sbiw	r24,2		\n\t"	//length-2
            "breq	final_write	\n\t"	//Finished
            "rjmp	length_loop	\n\t"
            "final_write:		\n\t"
            "cpi	r17,0		\n\t"
            "breq	block_done	\n\t"
            "adiw	r24,2		\n\t"	//length+2, fool above check on length after short page write
            "rjmp	write_page	\n\t"
            "block_done:		\n\t"
            "clr	__zero_reg__	\n\t"	//restore zero register
#if defined __AVR_ATmega168__  || __AVR_ATmega328P__ || __AVR_ATmega128__ || __AVR_ATmega1280__ || __AVR_ATmega1281__ || __AVR_ATmega1284P__
            : "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#else
            : "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#endif
          );
          /* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
          /* exit the bootloader without a power cycle anyhow */
        }
        putch(0x14);
        putch(0x10);
      }
      else
      {
        if (++error_count == MAX_ERROR_COUNT)
          app_start();
      }
    }
    /* Read memory block mode, length is big endian.  */
    else if(ch=='t')
    {
      length.byte[1] = getch();
      length.byte[0] = getch();
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
      if (address.word>0x7FFF) flags.rampz = 1;		// No go with m256, FIXME
      else flags.rampz = 0;
#endif
      address.word = address.word << 1;	        // address * 2 -> byte location
      if (getch() == 'E') flags.eeprom = 1;
      else flags.eeprom = 0;
      if (getch() == ' ')  		                // Command terminator
      {
        putch(0x14);
        for (w=0; w < length.word; w++)  		      // Can handle odd and even lengths okay
        {
          if (flags.eeprom)  	                        // Byte access EEPROM read
          {
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
            while(EECR & (1<<EEPE));
            EEAR = (uint16_t)(void *)address.word;
            EECR |= (1<<EERE);
            putch(EEDR);
#else
            putch(eeprom_read_byte((void *)address.word));
#endif
            address.word++;
          }
          else
          {
            if (!flags.rampz) putch(pgm_read_byte_near(address.word));
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
            else putch(pgm_read_byte_far(address.word + 0x10000));
            // Hmmmm, yuck  FIXME when m256 arrvies
#endif
            address.word++;
          }
        }
        putch(0x10);
      }
    }
    /* Get device signature bytes  */
    else if(ch=='u')
    {
      if (getch() == ' ')
      {
        putch(0x14);
        putch(SIG1);
        putch(SIG2);
        putch(SIG3);
        putch(0x10);
      }
      else
      {
        if (++error_count == MAX_ERROR_COUNT)
          app_start();
      }
    }
    /* Read oscillator calibration byte */
    else if(ch=='v')
    {
      byte_response(0x00);
    }
#if defined MONITOR
    /* here come the extended monitor commands by Erik Lins */
    /* check for three times exclamation mark pressed */
    else if(ch=='!')
    {
      ch = getch();
      if(ch=='!')
      {
        ch = getch();
        if(ch=='!')
        {
          PGM_P welcome = "";
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
          uint16_t extaddr;
#endif
          uint8_t addrl, addrh;
#ifdef CRUMB128
          welcome = "ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined PROBOMEGA128
          welcome = "ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined SAVVY128
          welcome = "ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined __AVR_ATmega1280__
          welcome = "ATmegaBOOT / Arduino Mega - (C) Arduino LLC - 090930\n\r";
#endif
          /* turn on LED */
          LED_DDR |= _BV(LED);
          LED_PORT &= ~_BV(LED);
          /* print a welcome message and command overview */
          for(i=0; welcome[i] != '\0'; ++i)
          {
            putch(welcome[i]);
          }
          /* test for valid commands */
          for(;;)
          {
            putch('\n');
            putch('\r');
            putch(':');
            putch(' ');
            ch = getch();
            putch(ch);
            /* toggle LED */
            if(ch == 't')
            {
              if(bit_is_set(LED_PIN,LED))
              {
                LED_PORT &= ~_BV(LED);
                putch('1');
              }
              else
              {
                LED_PORT |= _BV(LED);
                putch('0');
              }
            }
            /* read byte from address */
            else if(ch == 'r')
            {
              ch = getch();
              putch(ch);
              addrh = gethex();
              addrl = gethex();
              putch('=');
              ch = *(uint8_t *)((addrh << 8) + addrl);
              puthex(ch);
            }
            /* write a byte to address  */
            else if(ch == 'w')
            {
              ch = getch();
              putch(ch);
              addrh = gethex();
              addrl = gethex();
              ch = getch();
              putch(ch);
              ch = gethex();
              *(uint8_t *)((addrh << 8) + addrl) = ch;
            }
            /* read from uart and echo back */
            else if(ch == 'u')
            {
              for(;;)
              {
                putch(getch());
              }
            }
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
            /* external bus loop  */
            else if(ch == 'b')
            {
              putch('b');
              putch('u');
              putch('s');
              MCUCR = 0x80;
              XMCRA = 0;
              XMCRB = 0;
              extaddr = 0x1100;
              for(;;)
              {
                ch = *(volatile uint8_t *)extaddr;
                if(++extaddr == 0)
                {
                  extaddr = 0x1100;
                }
              }
            }
#endif
            else if(ch == 'j')
            {
              app_start();
            }
          } /* end of monitor functions */
        }
      }
    }
    /* end of monitor */
#endif
    else if (++error_count == MAX_ERROR_COUNT)
    {
      app_start();
    }
  } /* end of forever loop */
}


char gethexnib(void)
{
  char a;
  a = getch();
  putch(a);
  if(a >= 'a')
  {
    return (a - 'a' + 0x0a);
  }
  else if(a >= '0')
  {
    return(a - '0');
  }
  return a;
}


char gethex(void)
{
  return (gethexnib() << 4) + gethexnib();
}


void puthex(char ch)
{
  char ah;
  ah = ch >> 4;
  if(ah >= 0x0a)
  {
    ah = ah - 0x0a + 'a';
  }
  else
  {
    ah += '0';
  }
  ch &= 0x0f;
  if(ch >= 0x0a)
  {
    ch = ch - 0x0a + 'a';
  }
  else
  {
    ch += '0';
  }
  putch(ah);
  putch(ch);
}


void putch(char ch)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
  if(bootuart == 1)
  {
    while (!(UCSR0A & _BV(UDRE0)));
    UDR0 = ch;
  }
  else if (bootuart == 2)
  {
    while (!(UCSR1A & _BV(UDRE1)));
    UDR1 = ch;
  }
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
  while (!(UCSR0A & _BV(UDRE0)));
  UDR0 = ch;
#else
  /* m8,16,32,169,8515,8535,163 */
  while (!(UCSRA & _BV(UDRE)));
  UDR = ch;
#endif
}


char getch(void)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
  uint32_t count = 0;
  if(bootuart == 1)
  {
    while(!(UCSR0A & _BV(RXC0)))
    {
      /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
      /* HACKME:: here is a good place to count times*/
      count++;
      if (count > MAX_TIME_COUNT)
        app_start();
    }
    return UDR0;
  }
  else if(bootuart == 2)
  {
    while(!(UCSR1A & _BV(RXC1)))
    {
      /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
      /* HACKME:: here is a good place to count times*/
      count++;
      if (count > MAX_TIME_COUNT)
        app_start();
    }
    return UDR1;
  }
  return 0;
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
  uint32_t count = 0;
  while(!(UCSR0A & _BV(RXC0)))
  {
    /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
    /* HACKME:: here is a good place to count times*/
    count++;
    if (count > MAX_TIME_COUNT)
      app_start();
  }
  return UDR0;
#else
  /* m8,16,32,169,8515,8535,163 */
  uint32_t count = 0;
  while(!(UCSRA & _BV(RXC)))
  {
    /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
    /* HACKME:: here is a good place to count times*/
    count++;
    if (count > MAX_TIME_COUNT)
      app_start();
  }
  return UDR;
#endif
}


void getNch(uint8_t count)
{
  while(count--)
  {
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1284P__)
    if(bootuart == 1)
    {
      while(!(UCSR0A & _BV(RXC0)));
      UDR0;
    }
    else if(bootuart == 2)
    {
      while(!(UCSR1A & _BV(RXC1)));
      UDR1;
    }
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
    getch();
#else
    /* m8,16,32,169,8515,8535,163 */
    /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
    //while(!(UCSRA & _BV(RXC)));
    //UDR;
    getch(); // need to handle time out
#endif
  }
}


void byte_response(uint8_t val)
{
  if (getch() == ' ')
  {
    putch(0x14);
    putch(val);
    putch(0x10);
  }
  else
  {
    if (++error_count == MAX_ERROR_COUNT)
      app_start();
  }
}


void nothing_response(void)
{
  if (getch() == ' ')
  {
    putch(0x14);
    putch(0x10);
  }
  else
  {
    if (++error_count == MAX_ERROR_COUNT)
      app_start();
  }
}

void flash_led(uint8_t count)
{
  while (count--)
  {
    LED_PORT |= _BV(LED);
    _delay_ms(100);
    LED_PORT &= ~_BV(LED);
    _delay_ms(100);
  }
}


/* end of file ATmegaBOOT.c */