|
|
@ -541,13 +541,14 @@ float junction_deviation = 0.1;
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
block->steps[A_AXIS] = labs(dx + dy);
|
|
|
|
block->steps[A_AXIS] = labs(dx + dy);
|
|
|
|
block->steps[B_AXIS] = labs(dx - dy);
|
|
|
|
block->steps[B_AXIS] = labs(dx - dy);
|
|
|
|
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
// default non-h-bot planning
|
|
|
|
// default non-h-bot planning
|
|
|
|
block->steps[X_AXIS] = labs(dx);
|
|
|
|
block->steps[X_AXIS] = labs(dx);
|
|
|
|
block->steps[Y_AXIS] = labs(dy);
|
|
|
|
block->steps[Y_AXIS] = labs(dy);
|
|
|
|
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
|
|
|
|
block->steps[E_AXIS] = labs(de);
|
|
|
|
block->steps[E_AXIS] = labs(de);
|
|
|
|
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
|
|
|
|
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
|
|
|
|
block->steps[E_AXIS] *= extruder_multiplier[extruder];
|
|
|
|
block->steps[E_AXIS] *= extruder_multiplier[extruder];
|
|
|
@ -568,13 +569,14 @@ float junction_deviation = 0.1;
|
|
|
|
#ifdef COREXY
|
|
|
|
#ifdef COREXY
|
|
|
|
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
|
|
|
|
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
|
|
|
|
|
|
|
|
if (dz < 0) db |= BIT(Z_AXIS);
|
|
|
|
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
|
|
|
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
|
|
|
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
|
|
|
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
if (dx < 0) db |= BIT(X_AXIS);
|
|
|
|
if (dx < 0) db |= BIT(X_AXIS);
|
|
|
|
if (dy < 0) db |= BIT(Y_AXIS);
|
|
|
|
if (dy < 0) db |= BIT(Y_AXIS);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (dz < 0) db |= BIT(Z_AXIS);
|
|
|
|
if (dz < 0) db |= BIT(Z_AXIS);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
if (de < 0) db |= BIT(E_AXIS);
|
|
|
|
if (de < 0) db |= BIT(E_AXIS);
|
|
|
|
block->direction_bits = db;
|
|
|
|
block->direction_bits = db;
|
|
|
|
|
|
|
|
|
|
|
@ -586,14 +588,16 @@ float junction_deviation = 0.1;
|
|
|
|
enable_x();
|
|
|
|
enable_x();
|
|
|
|
enable_y();
|
|
|
|
enable_y();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef Z_LATE_ENABLE
|
|
|
|
|
|
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
if (block->steps[X_AXIS]) enable_x();
|
|
|
|
if (block->steps[X_AXIS]) enable_x();
|
|
|
|
if (block->steps[Y_AXIS]) enable_y();
|
|
|
|
if (block->steps[Y_AXIS]) enable_y();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef Z_LATE_ENABLE
|
|
|
|
#ifndef Z_LATE_ENABLE
|
|
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Enable extruder(s)
|
|
|
|
// Enable extruder(s)
|
|
|
|
if (block->steps[E_AXIS]) {
|
|
|
|
if (block->steps[E_AXIS]) {
|
|
|
@ -676,14 +680,15 @@ float junction_deviation = 0.1;
|
|
|
|
float delta_mm[6];
|
|
|
|
float delta_mm[6];
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
float delta_mm[4];
|
|
|
|
float delta_mm[4];
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
|
|
|
#endif
|
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
|
|
|
|
|
|
|
|
|
|
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
|
|
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
|
|
@ -692,11 +697,10 @@ float junction_deviation = 0.1;
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
block->millimeters = sqrt(
|
|
|
|
block->millimeters = sqrt(
|
|
|
|
#ifdef COREXY
|
|
|
|
#ifdef COREXY
|
|
|
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
|
|
|
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
|
|
|
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
+ square(delta_mm[Z_AXIS])
|
|
|
|
|
|
|
|
);
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|