diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 44d77a7967..5a0cf52337 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -4993,15 +4993,18 @@ inline void gcode_G28() { * Usage: * G33 * - * Cn = (default) = calibrates height ('1 point'), endstops, and delta radius with '4 point' - * and calibrates tower angles with '7+ point' - * n= -2, 1-7 : n*n probe points - * n=1 probes center - sets height only - usefull when z_offset is changed - * n=2 probes center and towers - * n=-2 probes center and opposite towers - * n=3 probes all points: center, towers and opposite towers - * n>3 probes all points multiple times and averages - * Vn = verbose level (n=0-3 default 1) + * Cn = n=-7 -> +7 : n*n probe points + * calibrates height ('1 point'), endstops, and delta radius ('4 points') + * and calibrates tower angles with n >= 3 ('7+ points') + * n=0 + * n=1 probes center / sets height only + * n=-1 same but 1 iteration only + * n=2 probes center and towers / sets height, endstops and delta radius + * n=-2 same but opposite towers + * n=3 probes all points: center, towers and opposite towers / sets all + * n>3 probes all points multiple times and averages + * n<=3 same but tower angle calibration disabled + * Vn = verbose level (n=0-2 default 1) * n=0 dry-run mode: no calibration * n=1 settings * n=2 setting + probe results @@ -5015,13 +5018,13 @@ inline void gcode_G28() { #endif const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, - probe_points = (WITHIN(pp, 1, 7) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; + probe_points = (WITHIN(pp, -7, -1) || WITHIN(pp, 1, 7)) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1; - float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end + float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end gcode_G28(); @@ -5084,54 +5087,54 @@ inline void gcode_G28() { int16_t center_points = 0; - if (probe_points != 3 && probe_points != 6) { // probe centre + if (abs(probe_points) != 3 && abs(probe_points != 6)) { // probe centre z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); center_points = 1; } - int16_t step_axis = (probe_points > 4) ? 2 : 4; - if (probe_points >= 3) { // probe extra 3 or 6 centre points - for (int8_t axis = (probe_points > 4) ? 11 : 9; axis > 0; axis -= step_axis) { + int16_t step_axis = (abs(probe_points) > 4) ? 2 : 4; + if (abs(probe_points) >= 3) { // probe extra 3 or 6 centre points + for (int8_t axis = (abs(probe_points) > 4) ? 11 : 9; axis > 0; axis -= step_axis) { z_at_pt[0] += probe_pt( cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); } - center_points += (probe_points > 4) ? 6 : 3; // average centre points + center_points += (abs(probe_points) > 4) ? 6 : 3; // average centre points z_at_pt[0] /= center_points; } float S1 = z_at_pt[0], S2 = sq(S1); int16_t N = 1, start = (probe_points == -2) ? 3 : 1; - step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 4 || probe_points > 5) ? 1 : 2; - float start_circles = (probe_points > 6) ? -1.5 : (probe_points > 4) ? -1 : 0, // one or multi radius points - end_circles = (probe_points > 6) ? 1.5 : (probe_points > 4) ? 1 : 0; // one or multi radius points + step_axis = (abs(probe_points) == 2) ? 4 : (abs(probe_points) == 4 || abs(probe_points) > 5) ? 1 : 2; + float start_circles = (abs(probe_points) > 6) ? -1.5 : (abs(probe_points) > 4) ? -1 : 0, // one or multi radius points + end_circles = (abs(probe_points) > 6) ? 1.5 : (abs(probe_points) > 4) ? 1 : 0; // one or multi radius points int8_t zig_zag = 1; - if (probe_points != 1) { - for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius - for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points + if (abs(probe_points) > 1) { + for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius + for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points z_at_pt[axis] += probe_pt( cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), true, 1); - if (probe_points > 5) start_circles += (zig_zag == 1) ? +0.5 : -0.5; // opposite one radius point less - if (probe_points > 5) end_circles += (zig_zag == 1) ? -0.5 : +0.5; + if (abs(probe_points) > 5) start_circles += (zig_zag == 1) ? +0.5 : -0.5; // opposites: one radius point less + if (abs(probe_points) > 5) end_circles += (zig_zag == 1) ? -0.5 : +0.5; zig_zag = -zig_zag; - if (probe_points > 4) z_at_pt[axis] /= (zig_zag == 1) ? 3.0 : 2.0; // average between radius points + if (abs(probe_points) > 4) z_at_pt[axis] /= (zig_zag == 1) ? 3.0 : 2.0; // average between radius points } } - if (probe_points == 4 || probe_points > 5) step_axis = 2; + if (abs(probe_points) == 4 || abs(probe_points) > 5) step_axis = 2; - for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to tower and opposite - if (probe_points == 4 || probe_points > 5) + for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to towers and opposites + if (abs(probe_points) == 4 || abs(probe_points) > 5) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } - zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane + zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane // Solve matrices @@ -5145,9 +5148,9 @@ inline void gcode_G28() { float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; const float r_diff = delta_radius - delta_calibration_radius, - h_factor = 1.00 + r_diff * 0.001, - r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm - a_factor = 100.0 / delta_calibration_radius; + h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm + r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm + a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm #define ZP(N,I) ((N) * z_at_pt[I]) #define Z1000(I) ZP(1.00, I) @@ -5162,9 +5165,10 @@ inline void gcode_G28() { #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) switch (probe_points) { + case -1: + test_precision = 0.00; case 1: LOOP_XYZ(i) e_delta[i] = Z1000(0); - r_delta = 0.00; break; case 2: @@ -5186,8 +5190,11 @@ inline void gcode_G28() { e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); - t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); - t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); + + if (probe_points > 0) { //probe points negative disables tower angles + t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); + t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); + } break; } @@ -5221,7 +5228,7 @@ inline void gcode_G28() { SERIAL_PROTOCOLPGM(". c:"); if (z_at_pt[0] > 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[0], 2); - if (probe_points > 1) { + if (abs(probe_points) > 2 || probe_points == 2) { SERIAL_PROTOCOLPGM(" x:"); if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[1], 2); @@ -5232,9 +5239,9 @@ inline void gcode_G28() { if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[9], 2); } - if (probe_points > 0) SERIAL_EOL; - if (probe_points > 2 || probe_points == -2) { - if (probe_points > 2) SERIAL_PROTOCOLPGM(". "); + if (probe_points != -2) SERIAL_EOL; + if (abs(probe_points) > 2 || probe_points == -2) { + if (abs(probe_points) > 2) SERIAL_PROTOCOLPGM(". "); SERIAL_PROTOCOLPGM(" yz:"); if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[7], 2); @@ -5247,14 +5254,14 @@ inline void gcode_G28() { SERIAL_EOL; } } - if (test_precision != 0.0) { // !forced end - if (zero_std_dev >= test_precision) { // end iterations + if (test_precision != 0.0) { // !forced end + if (zero_std_dev >= test_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); - SERIAL_PROTOCOLLNPGM(" rolling back."); - LCD_MESSAGEPGM("Calibration OK"); + SERIAL_PROTOCOLPGM(" rolling back."); SERIAL_EOL; + LCD_MESSAGEPGM("Calibration OK"); } - else { // !end iterations + else { // !end iterations char mess[15] = "No convergence"; if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); @@ -5291,10 +5298,19 @@ inline void gcode_G28() { if (zero_std_dev >= test_precision) SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); } - else { // forced end - SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); - SERIAL_PROTOCOL_F(zero_std_dev, 3); - SERIAL_EOL; + else { // forced end + if (verbose_level == 0) { + SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); + SERIAL_PROTOCOL_F(zero_std_dev, 3); + SERIAL_EOL; + } + else { + SERIAL_PROTOCOLLNPGM("Calibration OK"); + LCD_MESSAGEPGM("Calibration OK"); + SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); + SERIAL_EOL; + SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); + } } clean_up_after_endstop_or_probe_move(); diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 50c6fb5802..11f127c896 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -1834,7 +1834,7 @@ void kill_screen(const char* lcd_msg) { MENU_BACK(MSG_MAIN); #if ENABLED(DELTA_AUTO_CALIBRATION) MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C")); - MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C1")); + MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C-1")); #endif MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home); if (axis_homed[Z_AXIS]) {