Fix long acceleration overflow

2.0.x
Scott Lahteine 4 years ago
parent 0e9836649e
commit d705a5b45e

@ -207,7 +207,7 @@ skew_factor_t Planner::skew_factor; // Initialized by settings.load()
xyze_long_t Planner::position{0}; xyze_long_t Planner::position{0};
uint32_t Planner::cutoff_long; uint32_t Planner::acceleration_long_cutoff;
xyze_float_t Planner::previous_speed; xyze_float_t Planner::previous_speed;
float Planner::previous_nominal_speed_sqr; float Planner::previous_nominal_speed_sqr;
@ -2271,23 +2271,22 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
// Compute and limit the acceleration rate for the trapezoid generator. // Compute and limit the acceleration rate for the trapezoid generator.
const float steps_per_mm = block->step_event_count * inverse_millimeters; const float steps_per_mm = block->step_event_count * inverse_millimeters;
uint32_t accel; uint32_t accel;
if (!block->steps.a && !block->steps.b && !block->steps.c) { if (!block->steps.a && !block->steps.b && !block->steps.c) { // Is this a retract / recover move?
// convert to: acceleration steps/sec^2 accel = CEIL(settings.retract_acceleration * steps_per_mm); // Convert to: acceleration steps/sec^2
accel = CEIL(settings.retract_acceleration * steps_per_mm); TERN_(LIN_ADVANCE, block->use_advance_lead = false); // No linear advance for simple retract/recover
TERN_(LIN_ADVANCE, block->use_advance_lead = false);
} }
else { else {
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \ const uint32_t max_possible = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count / block->steps[AXIS]; \
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ NOMORE(accel, max_possible); \
} \ } \
}while(0) }while(0)
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ const float max_possible = float(max_acceleration_steps_per_s2[AXIS+INDX]) * float(block->step_event_count) / float(block->steps[AXIS]); \
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \ NOMORE(accel, max_possible); \
} \ } \
}while(0) }while(0)
@ -2336,7 +2335,7 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
#endif #endif
// Limit acceleration per axis // Limit acceleration per axis
if (block->step_event_count <= cutoff_long) { if (block->step_event_count <= acceleration_long_cutoff) {
LIMIT_ACCEL_LONG(A_AXIS, 0); LIMIT_ACCEL_LONG(A_AXIS, 0);
LIMIT_ACCEL_LONG(B_AXIS, 0); LIMIT_ACCEL_LONG(B_AXIS, 0);
LIMIT_ACCEL_LONG(C_AXIS, 0); LIMIT_ACCEL_LONG(C_AXIS, 0);
@ -2352,7 +2351,7 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
block->acceleration_steps_per_s2 = accel; block->acceleration_steps_per_s2 = accel;
block->acceleration = accel / steps_per_mm; block->acceleration = accel / steps_per_mm;
#if DISABLED(S_CURVE_ACCELERATION) #if DISABLED(S_CURVE_ACCELERATION)
block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE))); block->acceleration_rate = (uint32_t)(accel * (sq(4096.0f) / (STEPPER_TIMER_RATE)));
#endif #endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
if (block->use_advance_lead) { if (block->use_advance_lead) {
@ -3020,7 +3019,7 @@ void Planner::reset_acceleration_rates() {
max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i]; max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
} }
cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL acceleration_long_cutoff = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk()); TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk());
} }

@ -443,7 +443,7 @@ class Planner {
/** /**
* Limit where 64bit math is necessary for acceleration calculation * Limit where 64bit math is necessary for acceleration calculation
*/ */
static uint32_t cutoff_long; static uint32_t acceleration_long_cutoff;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float last_fade_z; static float last_fade_z;

Loading…
Cancel
Save