Merge pull request #8082 from thinkyhead/bf2_xon_xoff_due

[2.0.x] Arduino Due XON/XOFF implementation
2.0.x
Scott Lahteine 7 years ago committed by GitHub
commit c1c3ca6f8a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -84,7 +84,7 @@
// Currently looking for: M108, M112, M410
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
FORCE_INLINE void emergency_parser(const unsigned char c) {
FORCE_INLINE void emergency_parser(const uint8_t c) {
static e_parser_state state = state_RESET;
@ -169,13 +169,16 @@
#endif // EMERGENCY_PARSER
FORCE_INLINE void store_rxd_char() {
const ring_buffer_pos_t h = rx_buffer.head,
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Read the character
const uint8_t c = M_UDRx;
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the buffer is
// critical, so don't write the character or advance the head.
const char c = M_UDRx;
if (i != rx_buffer.tail) {
rx_buffer.buffer[h] = c;
rx_buffer.head = i;
@ -194,6 +197,7 @@
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {

@ -29,37 +29,35 @@
#ifndef _HAL_DUE_H
#define _HAL_DUE_H
// --------------------------------------------------------------------------
// Includes
// --------------------------------------------------------------------------
#include <stdint.h>
#include "Arduino.h"
#include "fastio_Due.h"
#include "watchdog_Due.h"
#include "HAL_timers_Due.h"
// --------------------------------------------------------------------------
//
// Defines
// --------------------------------------------------------------------------
//
#if SERIAL_PORT == -1
#define MYSERIAL SerialUSB
#elif SERIAL_PORT == 0
#define MYSERIAL Serial
#define MYSERIAL customizedSerial
#elif SERIAL_PORT == 1
#define MYSERIAL Serial1
#define MYSERIAL customizedSerial
#elif SERIAL_PORT == 2
#define MYSERIAL Serial2
#define MYSERIAL customizedSerial
#elif SERIAL_PORT == 3
#define MYSERIAL Serial3
#define MYSERIAL customizedSerial
#endif
#define _BV(bit) (1 << (bit))
// We need the previous define before the include, or compilation bombs...
#include "MarlinSerial_Due.h"
#ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p < 12u) ? (p) + 54u : -1)
#endif
@ -102,46 +100,43 @@ typedef int8_t pin_t;
// Public Variables
// --------------------------------------------------------------------------
/** result of last ADC conversion */
extern uint16_t HAL_adc_result;
extern uint16_t HAL_adc_result; // result of last ADC conversion
// --------------------------------------------------------------------------
// Public functions
// --------------------------------------------------------------------------
void cli(void); // Disable interrupts
void sei(void); // Enable interrupts
// Disable interrupts
void cli(void);
// Enable interrupts
void sei(void);
/** clear reset reason */
void HAL_clear_reset_source (void);
/** reset reason */
uint8_t HAL_get_reset_source (void);
void HAL_clear_reset_source(void); // clear reset reason
uint8_t HAL_get_reset_source(void); // get reset reason
void _delay_ms(const int delay);
int freeMemory(void);
// SPI: Extended functions which take a channel number (hardware SPI only)
/** Write single byte to specified SPI channel */
/**
* SPI: Extended functions taking a channel number (hardware SPI only)
*/
// Write single byte to specified SPI channel
void spiSend(uint32_t chan, byte b);
/** Write buffer to specified SPI channel */
// Write buffer to specified SPI channel
void spiSend(uint32_t chan, const uint8_t* buf, size_t n);
/** Read single byte from specified SPI channel */
// Read single byte from specified SPI channel
uint8_t spiRec(uint32_t chan);
/**
* EEPROM
*/
// EEPROM
void eeprom_write_byte(unsigned char *pos, unsigned char value);
unsigned char eeprom_read_byte(unsigned char *pos);
void eeprom_read_block (void *__dst, const void *__src, size_t __n);
void eeprom_update_block (const void *__src, void *__dst, size_t __n);
// ADC
/**
* ADC
*/
#define HAL_ANALOG_SELECT(pin)
@ -150,20 +145,13 @@ inline void HAL_adc_init(void) {}//todo
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(void);
//
uint16_t HAL_getAdcReading(uint8_t chan);
void HAL_startAdcConversion(uint8_t chan);
uint8_t HAL_pinToAdcChannel(int pin);
uint16_t HAL_getAdcFreerun(uint8_t chan, bool wait_for_conversion = false);
//uint16_t HAL_getAdcSuperSample(uint8_t chan);
void HAL_enable_AdcFreerun(void);
//void HAL_disable_AdcFreerun(uint8_t chan);
@ -171,9 +159,4 @@ void HAL_enable_AdcFreerun(void);
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
// --------------------------------------------------------------------------
//
// --------------------------------------------------------------------------
#endif // _HAL_DUE_H

@ -0,0 +1,95 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* InterruptVectors_Due.cpp - This module relocates the Interrupt vector table to SRAM,
* allowing to register new interrupt handlers at runtime. Specially valuable and needed
* because Arduino runtime allocates some interrupt handlers that we NEED to override to
* properly support extended functionality, as for example, USB host or USB device (MSD, MTP)
* and custom serial port handlers, and we don't actually want to modify and/or recompile the
* Arduino runtime. We just want to run as much as possible on Stock Arduino
*
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
*/
#ifdef ARDUINO_ARCH_SAM
#include "HAL_Due.h"
#include "InterruptVectors_Due.h"
/* The relocated Exception/Interrupt Table - Must be aligned to 128bytes,
as bits 0-6 on VTOR register are reserved and must be set to 0 */
__attribute__ ((aligned(128)))
static DeviceVectors ram_tab = { NULL };
/**
* This function checks if the exception/interrupt table is already in SRAM or not.
* If it is not, then it copies the ROM table to the SRAM and relocates the table
* by reprogramming the NVIC registers
*/
static pfnISR_Handler* get_relocated_table_addr(void) {
// Get the address of the interrupt/exception table
uint32_t isrtab = SCB->VTOR;
// If already relocated, we are done!
if (isrtab >= IRAM0_ADDR)
return (pfnISR_Handler*)isrtab;
// Get the address of the table stored in FLASH
const pfnISR_Handler* romtab = (const pfnISR_Handler*)isrtab;
// Copy it to SRAM
memcpy(&ram_tab, romtab, sizeof(ram_tab));
// Disable global interrupts
CRITICAL_SECTION_START;
// Set the vector table base address to the SRAM copy
SCB->VTOR = (uint32_t)(&ram_tab);
// Reenable interrupts
CRITICAL_SECTION_END;
// Return the address of the table
return (pfnISR_Handler*)(&ram_tab);
}
pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler) {
// Get the address of the relocated table
const pfnISR_Handler *isrtab = get_relocated_table_addr();
// Disable global interrupts
CRITICAL_SECTION_START;
// Get the original handler
pfnISR_Handler oldHandler = isrtab[irq + 16];
// Install the new one
isrtab[irq + 16] = newHandler;
// Reenable interrupts
CRITICAL_SECTION_END;
// Return the original one
return oldHandler;
}
#endif

@ -0,0 +1,52 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* InterruptVectors_Due.h
*
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
*
* This module relocates the Interrupt vector table to SRAM, allowing new
* interrupt handlers to be added at runtime. This is required because the
* Arduino runtime steals interrupt handlers that Marlin MUST use to support
* extended functionality such as USB hosts and USB devices (MSD, MTP) and
* custom serial port handlers. Rather than modifying and/or recompiling the
* Arduino runtime, We just want to run as much as possible on Stock Arduino.
*
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
*/
#ifndef INTERRUPTVECTORS_DUE_H
#define INTERRUPTVECTORS_DUE_H
#include "../../inc/MarlinConfig.h"
#ifdef ARDUINO_ARCH_SAM
// ISR handler type
typedef void (*pfnISR_Handler)(void);
// Install a new interrupt vector handler for the given irq, returning the old one
pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler);
#endif // ARDUINO_ARCH_SAM
#endif // INTERRUPTVECTORS_DUE_H

@ -0,0 +1,680 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "MarlinSerial_Due.h"
#include "InterruptVectors_Due.h"
#include "../../Marlin.h"
// Based on selected port, use the proper configuration
#if SERIAL_PORT == 0
#define HWUART UART
#define HWUART_IRQ UART_IRQn
#define HWUART_IRQ_ID ID_UART
#elif SERIAL_PORT == 1
#define HWUART USART0
#define HWUART_IRQ USART0_IRQn
#define HWUART_IRQ_ID ID_USART0
#elif SERIAL_PORT == 2
#define HWUART USART1
#define HWUART_IRQ USART1_IRQn
#define HWUART_IRQ_ID ID_USART1
#elif SERIAL_PORT == 3
#define HWUART USART3
#define HWUART_IRQ USART3_IRQn
#define HWUART_IRQ_ID ID_USART3
#endif
struct ring_buffer_r {
unsigned char buffer[RX_BUFFER_SIZE];
volatile ring_buffer_pos_t head, tail;
};
#if TX_BUFFER_SIZE > 0
struct ring_buffer_t {
unsigned char buffer[TX_BUFFER_SIZE];
volatile uint8_t head, tail;
};
#endif
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if TX_BUFFER_SIZE > 0
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
static bool _written;
#endif
#if ENABLED(SERIAL_XON_XOFF)
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
constexpr uint8_t XON_CHAR = 17;
constexpr uint8_t XOFF_CHAR = 19;
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on
// the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced
// latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required
// to avoid overflows.
#if RX_BUFFER_SIZE < 4096
#error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake
#endif
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
uint8_t rx_dropped_bytes = 0;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
ring_buffer_pos_t rx_max_enqueued = 0;
#endif
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
#if ENABLED(EMERGENCY_PARSER)
#include "../../module/stepper.h"
// Currently looking for: M108, M112, M410
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
FORCE_INLINE void emergency_parser(const uint8_t c) {
static e_parser_state state = state_RESET;
switch (state) {
case state_RESET:
switch (c) {
case ' ': break;
case 'N': state = state_N; break;
case 'M': state = state_M; break;
default: state = state_IGNORE;
}
break;
case state_N:
switch (c) {
case '0': case '1': case '2':
case '3': case '4': case '5':
case '6': case '7': case '8':
case '9': case '-': case ' ': break;
case 'M': state = state_M; break;
default: state = state_IGNORE;
}
break;
case state_M:
switch (c) {
case ' ': break;
case '1': state = state_M1; break;
case '4': state = state_M4; break;
default: state = state_IGNORE;
}
break;
case state_M1:
switch (c) {
case '0': state = state_M10; break;
case '1': state = state_M11; break;
default: state = state_IGNORE;
}
break;
case state_M10:
state = (c == '8') ? state_M108 : state_IGNORE;
break;
case state_M11:
state = (c == '2') ? state_M112 : state_IGNORE;
break;
case state_M4:
state = (c == '1') ? state_M41 : state_IGNORE;
break;
case state_M41:
state = (c == '0') ? state_M410 : state_IGNORE;
break;
case state_IGNORE:
if (c == '\n') state = state_RESET;
break;
default:
if (c == '\n') {
switch (state) {
case state_M108:
wait_for_user = wait_for_heatup = false;
break;
case state_M112:
kill(PSTR(MSG_KILLED));
break;
case state_M410:
quickstop_stepper();
break;
default:
break;
}
state = state_RESET;
}
}
}
#endif // EMERGENCY_PARSER
FORCE_INLINE void store_rxd_char() {
const ring_buffer_pos_t h = rx_buffer.head,
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Read the character
const uint8_t c = HWUART->UART_RHR;
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the buffer is
// critical, so don't write the character or advance the head.
if (i != rx_buffer.tail) {
rx_buffer.buffer[h] = c;
rx_buffer.head = i;
}
#if ENABLED(SERIAL_STATS_DROPPED_RX)
else if (!++rx_dropped_bytes) ++rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// if we are above 12.5% of RX buffer capacity, send XOFF before
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
// let the host react and stop sending bytes. This translates to 13mS
// propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
// If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
// Send an XOFF character
HWUART->UART_THR = XOFF_CHAR;
// And remember it was sent
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
}
else {
// TX interrupts disabled, but buffer still not empty ... or
// TX interrupts enabled. Reenable TX ints and schedule XOFF
// character to be sent
#if TX_BUFFER_SIZE > 0
HWUART->UART_IER = UART_IER_TXRDY;
xon_xoff_state = XOFF_CHAR;
#else
// We are not using TX interrupts, we will have to send this manually
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
HWUART->UART_THR = XOFF_CHAR;
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif
}
}
}
#endif // SERIAL_XON_XOFF
#if ENABLED(EMERGENCY_PARSER)
emergency_parser(c);
#endif
}
#if TX_BUFFER_SIZE > 0
FORCE_INLINE void _tx_thr_empty_irq(void) {
// If interrupts are enabled, there must be more data in the output
// buffer.
#if ENABLED(SERIAL_XON_XOFF)
// Do a priority insertion of an XON/XOFF char, if needed.
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
HWUART->UART_THR = state & XON_XOFF_CHAR_MASK;
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
else
#endif
{ // Send the next byte
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t];
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
HWUART->UART_THR = c;
}
// Disable interrupts if the buffer is empty
if (tx_buffer.head == tx_buffer.tail)
HWUART->UART_IDR = UART_IDR_TXRDY;
}
#endif // TX_BUFFER_SIZE
static void UART_ISR(void) {
uint32_t status = HWUART->UART_SR;
// Did we receive data?
if (status & UART_SR_RXRDY)
store_rxd_char();
#if TX_BUFFER_SIZE > 0
// Do we have something to send, and TX interrupts are enabled (meaning something to send) ?
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY))
_tx_thr_empty_irq();
#endif
// Acknowledge errors
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
// TODO: error reporting outside ISR
HWUART->UART_CR = UART_CR_RSTSTA;
}
}
// Public Methods
void MarlinSerial::begin(const long baud_setting) {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
// Disable clock
pmc_disable_periph_clk( HWUART_IRQ_ID );
// Configure PMC
pmc_enable_periph_clk( HWUART_IRQ_ID );
// Disable PDC channel
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
// Reset and disable receiver and transmitter
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
// Configure mode: 8bit, No parity, 1 bit stop
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
// Configure baudrate (asynchronous, no oversampling)
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
// Configure interrupts
HWUART->UART_IDR = 0xFFFFFFFF;
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
// Install interrupt handler
install_isr(HWUART_IRQ, UART_ISR);
// Enable UART interrupt in NVIC
NVIC_EnableIRQ(HWUART_IRQ);
// Enable receiver and transmitter
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
#if TX_BUFFER_SIZE > 0
_written = false;
#endif
}
void MarlinSerial::end() {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
pmc_disable_periph_clk( HWUART_IRQ_ID );
}
void MarlinSerial::checkRx(void) {
if (HWUART->UART_SR & UART_SR_RXRDY) {
CRITICAL_SECTION_START;
store_rxd_char();
CRITICAL_SECTION_END;
}
}
int MarlinSerial::peek(void) {
CRITICAL_SECTION_START;
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
CRITICAL_SECTION_END;
return v;
}
int MarlinSerial::read(void) {
int v;
CRITICAL_SECTION_START;
const ring_buffer_pos_t t = rx_buffer.tail;
if (rx_buffer.head == t)
v = -1;
else {
v = rx_buffer.buffer[t];
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before
// running out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE) / 10) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
CRITICAL_SECTION_END; // End critical section before returning!
writeNoHandshake(XON_CHAR);
return v;
}
}
#endif
}
CRITICAL_SECTION_END;
return v;
}
ring_buffer_pos_t MarlinSerial::available(void) {
CRITICAL_SECTION_START;
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
CRITICAL_SECTION_END;
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
}
void MarlinSerial::flush(void) {
// Don't change this order of operations. If the RX interrupt occurs between
// reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
// may be written to rx_buffer_tail, making the buffer appear full rather than empty.
CRITICAL_SECTION_START;
rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END;
#if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
writeNoHandshake(XON_CHAR);
}
#endif
}
#if TX_BUFFER_SIZE > 0
uint8_t MarlinSerial::availableForWrite(void) {
CRITICAL_SECTION_START;
const uint8_t h = tx_buffer.head, t = tx_buffer.tail;
CRITICAL_SECTION_END;
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
}
void MarlinSerial::write(const uint8_t c) {
#if ENABLED(SERIAL_XON_XOFF)
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
// Send 2 chars: XON/XOFF, then a user-specified char
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
#endif
writeNoHandshake(c);
}
void MarlinSerial::writeNoHandshake(const uint8_t c) {
_written = true;
CRITICAL_SECTION_START;
bool emty = (tx_buffer.head == tx_buffer.tail);
CRITICAL_SECTION_END;
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
if (emty && (HWUART->UART_SR & UART_SR_TXRDY)) {
CRITICAL_SECTION_START;
HWUART->UART_THR = c;
HWUART->UART_IER = UART_IER_TXRDY;
CRITICAL_SECTION_END;
return;
}
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == tx_buffer.tail) {
if (__get_PRIMASK()) {
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if (HWUART->UART_SR & UART_SR_TXRDY)
_tx_thr_empty_irq();
}
else {
// nop, the interrupt handler will free up space for us
}
sw_barrier();
}
tx_buffer.buffer[tx_buffer.head] = c;
{ CRITICAL_SECTION_START;
tx_buffer.head = i;
HWUART->UART_IER = UART_IER_TXRDY;
CRITICAL_SECTION_END;
}
return;
}
void MarlinSerial::flushTX(void) {
// TX
// If we have never written a byte, no need to flush.
if (!_written)
return;
while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
if (__get_PRIMASK())
if ((HWUART->UART_SR & UART_SR_TXRDY))
_tx_thr_empty_irq();
sw_barrier();
}
// If we get here, nothing is queued anymore (TX interrupts are disabled) and
// the hardware finished tranmission (TXEMPTY is set).
}
#else // TX_BUFFER_SIZE == 0
void MarlinSerial::write(const uint8_t c) {
#if ENABLED(SERIAL_XON_XOFF)
// Do a priority insertion of an XON/XOFF char, if needed.
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
#endif
writeNoHandshake(c);
}
void MarlinSerial::writeNoHandshake(const uint8_t c) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
HWUART->UART_THR = c;
}
#endif // TX_BUFFER_SIZE == 0
/**
* Imports from print.h
*/
void MarlinSerial::print(char c, int base) {
print((long)c, base);
}
void MarlinSerial::print(unsigned char b, int base) {
print((unsigned long)b, base);
}
void MarlinSerial::print(int n, int base) {
print((long)n, base);
}
void MarlinSerial::print(unsigned int n, int base) {
print((unsigned long)n, base);
}
void MarlinSerial::print(long n, int base) {
if (base == 0)
write(n);
else if (base == 10) {
if (n < 0) {
print('-');
n = -n;
}
printNumber(n, 10);
}
else
printNumber(n, base);
}
void MarlinSerial::print(unsigned long n, int base) {
if (base == 0) write(n);
else printNumber(n, base);
}
void MarlinSerial::print(double n, int digits) {
printFloat(n, digits);
}
void MarlinSerial::println(void) {
print('\r');
print('\n');
}
void MarlinSerial::println(const String& s) {
print(s);
println();
}
void MarlinSerial::println(const char c[]) {
print(c);
println();
}
void MarlinSerial::println(char c, int base) {
print(c, base);
println();
}
void MarlinSerial::println(unsigned char b, int base) {
print(b, base);
println();
}
void MarlinSerial::println(int n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(unsigned int n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(long n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(unsigned long n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(double n, int digits) {
print(n, digits);
println();
}
// Private Methods
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0;
while (n) {
buf[i++] = n % base;
n /= base;
}
while (i--)
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
}
else
print('0');
}
void MarlinSerial::printFloat(double number, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i)
rounding *= 0.1;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits) {
print('.');
// Extract digits from the remainder one at a time
while (digits--) {
remainder *= 10.0;
int toPrint = int(remainder);
print(toPrint);
remainder -= toPrint;
}
}
}
// Preinstantiate
MarlinSerial customizedSerial;
#endif // ARDUINO_ARCH_SAM

@ -0,0 +1,142 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial_Due.h - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#ifndef MARLINSERIAL_DUE_H
#define MARLINSERIAL_DUE_H
#include "../../inc/MarlinConfig.h"
#include <WString.h>
#ifndef SERIAL_PORT
#define SERIAL_PORT 0
#endif
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
#define BYTE 0
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
// 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256)
#ifndef RX_BUFFER_SIZE
#define RX_BUFFER_SIZE 128
#endif
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 32
#endif
#if ENABLED(SERIAL_XON_XOFF) && RX_BUFFER_SIZE < 1024
#error "XON/XOFF requires RX_BUFFER_SIZE >= 1024 for reliable transfers without drops."
#endif
#if !IS_POWER_OF_2(RX_BUFFER_SIZE) || RX_BUFFER_SIZE < 2
#error "RX_BUFFER_SIZE must be a power of 2 greater than 1."
#endif
#if TX_BUFFER_SIZE && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWER_OF_2(TX_BUFFER_SIZE))
#error "TX_BUFFER_SIZE must be 0 or a power of 2 greater than 1."
#endif
#if RX_BUFFER_SIZE > 256
typedef uint16_t ring_buffer_pos_t;
#else
typedef uint8_t ring_buffer_pos_t;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
extern uint8_t rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
extern ring_buffer_pos_t rx_max_enqueued;
#endif
class MarlinSerial {
public:
MarlinSerial() {};
static void begin(const long);
static void end();
static int peek(void);
static int read(void);
static void flush(void);
static ring_buffer_pos_t available(void);
static void checkRx(void);
static void write(const uint8_t c);
#if TX_BUFFER_SIZE > 0
static uint8_t availableForWrite(void);
static void flushTX(void);
#endif
static void writeNoHandshake(const uint8_t c);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
#endif
static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
static FORCE_INLINE void print(const char* str) { write(str); }
static void print(char, int = BYTE);
static void print(unsigned char, int = BYTE);
static void print(int, int = DEC);
static void print(unsigned int, int = DEC);
static void print(long, int = DEC);
static void print(unsigned long, int = DEC);
static void print(double, int = 2);
static void println(const String& s);
static void println(const char[]);
static void println(char, int = BYTE);
static void println(unsigned char, int = BYTE);
static void println(int, int = DEC);
static void println(unsigned int, int = DEC);
static void println(long, int = DEC);
static void println(unsigned long, int = DEC);
static void println(double, int = 2);
static void println(void);
operator bool() { return true; }
private:
static void printNumber(unsigned long, const uint8_t);
static void printFloat(double, uint8_t);
};
extern MarlinSerial customizedSerial;
#endif // MARLINSERIAL_DUE_H

@ -25,6 +25,25 @@
#include "../inc/MarlinConfig.h"
#if HAS_ABL && ENABLED(DEBUG_LEVELING_FEATURE)
#include "../libs/vector_3.h"
#endif
/**
* Define debug bit-masks
*/
enum DebugFlags {
DEBUG_NONE = 0,
DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed
DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output
DEBUG_ERRORS = _BV(2), ///< Not implemented
DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
DEBUG_ALL = 0xFF
};
//todo: HAL: breaks encapsulation
// For AVR only, define a serial interface based on configuration
#ifdef __AVR__
@ -41,22 +60,10 @@
#endif
#endif
#include "../libs/vector_3.h"
/**
* Define debug bit-masks
*/
enum DebugFlags {
DEBUG_NONE = 0,
DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed
DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output
DEBUG_ERRORS = _BV(2), ///< Not implemented
DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
DEBUG_ALL = 0xFF
};
#ifdef ARDUINO_ARCH_SAM
// To pull the Serial port definitions and overrides
#include "../HAL/HAL_DUE/MarlinSerial_Due.h"
#endif
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))

@ -1,11 +1,11 @@
/**********************************************************************
* $Id$ debug_frmwrk.c 2010-05-21
*//**
* @file debug_frmwrk.c
* @brief Contains some utilities that used for debugging through UART
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
* $Id$ debug_frmwrk.c 2010-05-21
*
* @file debug_frmwrk.c
* @brief Contains some utilities that used for debugging through UART
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
@ -37,12 +37,13 @@
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#include "lpc17xx_libcfg_default.h"
#endif
#ifdef _DBGFWK
/* Debug framework */
static Bool debug_frmwrk_initialized = FALSE;
@ -59,284 +60,247 @@ uint8_t (*_db_get_char)(LPC_UART_TypeDef *UARTx) = UARTGetChar;
/*********************************************************************//**
* @brief Puts a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] ch Character to put
* @return None
* @brief Puts a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] ch Character to put
* @return None
**********************************************************************/
void UARTPutChar (LPC_UART_TypeDef *UARTx, uint8_t ch)
{
void UARTPutChar(LPC_UART_TypeDef *UARTx, uint8_t ch) {
if (debug_frmwrk_initialized)
UART_Send(UARTx, &ch, 1, BLOCKING);
UART_Send(UARTx, &ch, 1, BLOCKING);
}
/*********************************************************************//**
* @brief Get a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @return character value that returned
* @brief Get a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @return character value that returned
**********************************************************************/
uint8_t UARTGetChar (LPC_UART_TypeDef *UARTx)
{
uint8_t UARTGetChar(LPC_UART_TypeDef *UARTx) {
uint8_t tmp = 0;
if (debug_frmwrk_initialized)
UART_Receive(UARTx, &tmp, 1, BLOCKING);
return(tmp);
}
/*********************************************************************//**
* @brief Puts a string to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str string to put
* @return None
**********************************************************************/
void UARTPuts(LPC_UART_TypeDef *UARTx, const void *str)
{
uint8_t *s = (uint8_t *) str;
if (!debug_frmwrk_initialized)
return;
while (*s)
{
UARTPutChar(UARTx, *s++);
}
}
/*********************************************************************//**
* @brief Puts a string to UART port and print new line
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str String to put
* @return None
**********************************************************************/
void UARTPuts_(LPC_UART_TypeDef *UARTx, const void *str)
{
if (!debug_frmwrk_initialized)
return;
UARTPuts (UARTx, str);
UARTPuts (UARTx, "\n\r");
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutDec(LPC_UART_TypeDef *UARTx, uint8_t decnum)
{
if (!debug_frmwrk_initialized)
return;
uint8_t c1=decnum%10;
uint8_t c2=(decnum/10)%10;
uint8_t c3=(decnum/100)%10;
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
return(tmp);
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
* @brief Puts a string to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str string to put
* @return None
**********************************************************************/
void UARTPutDec16(LPC_UART_TypeDef *UARTx, uint16_t decnum)
{
if (!debug_frmwrk_initialized)
return;
void UARTPuts(LPC_UART_TypeDef *UARTx, const void *str) {
if (!debug_frmwrk_initialized) return;
uint8_t c1=decnum%10;
uint8_t c2=(decnum/10)%10;
uint8_t c3=(decnum/100)%10;
uint8_t c4=(decnum/1000)%10;
uint8_t c5=(decnum/10000)%10;
UARTPutChar(UARTx, '0'+c5);
UARTPutChar(UARTx, '0'+c4);
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
uint8_t *s = (uint8_t*)str;
while (*s) UARTPutChar(UARTx, *s++);
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
* @brief Puts a string to UART port and print new line
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str String to put
* @return None
**********************************************************************/
void UARTPutDec32(LPC_UART_TypeDef *UARTx, uint32_t decnum)
{
if (!debug_frmwrk_initialized)
return;
void UARTPuts_(LPC_UART_TypeDef *UARTx, const void *str) {
if (!debug_frmwrk_initialized) return;
uint8_t c1=decnum%10;
uint8_t c2=(decnum/10)%10;
uint8_t c3=(decnum/100)%10;
uint8_t c4=(decnum/1000)%10;
uint8_t c5=(decnum/10000)%10;
uint8_t c6=(decnum/100000)%10;
uint8_t c7=(decnum/1000000)%10;
uint8_t c8=(decnum/10000000)%10;
uint8_t c9=(decnum/100000000)%10;
uint8_t c10=(decnum/1000000000)%10;
UARTPutChar(UARTx, '0'+c10);
UARTPutChar(UARTx, '0'+c9);
UARTPutChar(UARTx, '0'+c8);
UARTPutChar(UARTx, '0'+c7);
UARTPutChar(UARTx, '0'+c6);
UARTPutChar(UARTx, '0'+c5);
UARTPutChar(UARTx, '0'+c4);
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
UARTPuts (UARTx, str);
UARTPuts (UARTx, "\n\r");
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (8-bit long)
* @return None
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutHex (LPC_UART_TypeDef *UARTx, uint8_t hexnum)
{
uint8_t nibble, i;
if (!debug_frmwrk_initialized)
return;
void UARTPutDec(LPC_UART_TypeDef *UARTx, uint8_t decnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
i = 1;
do {
nibble = (hexnum >> (4*i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (16-bit long)
* @return None
**********************************************************************/
void UARTPutHex16 (LPC_UART_TypeDef *UARTx, uint16_t hexnum)
{
uint8_t nibble, i;
if (!debug_frmwrk_initialized)
return;
UARTPuts(UARTx, "0x");
i = 3;
do {
nibble = (hexnum >> (4*i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
uint8_t c1 = decnum%10;
uint8_t c2 = (decnum / 10) % 10;
uint8_t c3 = (decnum / 100) % 10;
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (32-bit long)
* @return None
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutHex32 (LPC_UART_TypeDef *UARTx, uint32_t hexnum)
{
uint8_t nibble, i;
if (!debug_frmwrk_initialized)
return;
void UARTPutDec16(LPC_UART_TypeDef *UARTx, uint16_t decnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
i = 7;
do {
nibble = (hexnum >> (4*i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
uint8_t c1 = decnum%10;
uint8_t c2 = (decnum / 10) % 10;
uint8_t c3 = (decnum / 100) % 10;
uint8_t c4 = (decnum / 1000) % 10;
uint8_t c5 = (decnum / 10000) % 10;
UARTPutChar(UARTx, '0'+c5);
UARTPutChar(UARTx, '0'+c4);
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
}
///*********************************************************************//**
// * @brief print function that supports format as same as printf()
// * function of <stdio.h> library
// * @param[in] None
// * @return None
// **********************************************************************/
//void _printf (const char *format, ...)
//{
// static char buffer[512 + 1];
// va_list vArgs;
// char *tmp;
// va_start(vArgs, format);
// vsprintf((char *)buffer, (char const *)format, vArgs);
// va_end(vArgs);
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutDec32(LPC_UART_TypeDef *UARTx, uint32_t decnum) {
if (!debug_frmwrk_initialized) return;
const uint8_t c1 = decnum % 10,
c2 = (decnum / 10) % 10,
c3 = (decnum / 100) % 10,
c4 = (decnum / 1000) % 10,
c5 = (decnum / 10000) % 10,
c6 = (decnum / 100000) % 10,
c7 = (decnum / 1000000) % 10,
c8 = (decnum / 10000000) % 10,
c9 = (decnum / 100000000) % 10,
c10 = (decnum / 1000000000) % 10;
UARTPutChar(UARTx, '0' + c10);
UARTPutChar(UARTx, '0' + c9);
UARTPutChar(UARTx, '0' + c8);
UARTPutChar(UARTx, '0' + c7);
UARTPutChar(UARTx, '0' + c6);
UARTPutChar(UARTx, '0' + c5);
UARTPutChar(UARTx, '0' + c4);
UARTPutChar(UARTx, '0' + c3);
UARTPutChar(UARTx, '0' + c2);
UARTPutChar(UARTx, '0' + c1);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (8-bit long)
* @return None
**********************************************************************/
void UARTPutHex(LPC_UART_TypeDef *UARTx, uint8_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 1;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (16-bit long)
* @return None
**********************************************************************/
void UARTPutHex16(LPC_UART_TypeDef *UARTx, uint16_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 3;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (32-bit long)
* @return None
**********************************************************************/
void UARTPutHex32(LPC_UART_TypeDef *UARTx, uint32_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 7;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief print function that supports format as same as printf()
* function of <stdio.h> library
* @param[in] None
* @return None
**********************************************************************/
//void _printf (const char *format, ...) {
// static char buffer[512 + 1];
// va_list vArgs;
// char *tmp;
// va_start(vArgs, format);
// vsprintf((char *)buffer, (char const *)format, vArgs);
// va_end(vArgs);
//
// _DBG(buffer);
// _DBG(buffer);
//}
/*********************************************************************//**
* @brief Initialize Debug frame work through initializing UART port
* @param[in] None
* @return None
* @brief Initialize Debug frame work through initializing UART port
* @param[in] None
* @return None
**********************************************************************/
void debug_frmwrk_init(void)
{
UART_CFG_Type UARTConfigStruct;
PINSEL_CFG_Type PinCfg;
void debug_frmwrk_init(void) {
UART_CFG_Type UARTConfigStruct;
PINSEL_CFG_Type PinCfg;
#if (USED_UART_DEBUG_PORT==0)
/*
* Initialize UART0 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 2;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 3;
PINSEL_ConfigPin(&PinCfg);
#if (USED_UART_DEBUG_PORT==0)
/*
* Initialize UART0 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 2;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 3;
PINSEL_ConfigPin(&PinCfg);
#elif (USED_UART_DEBUG_PORT==1)
/*
* Initialize UART1 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 15;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 16;
PINSEL_ConfigPin(&PinCfg);
#endif
#elif (USED_UART_DEBUG_PORT==1)
/*
* Initialize UART1 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 15;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 16;
PINSEL_ConfigPin(&PinCfg);
#endif
/* Initialize UART Configuration parameter structure to default state:
* Baudrate = 9600bps
* 8 data bit
* 1 Stop bit
* None parity
*/
UART_ConfigStructInit(&UARTConfigStruct);
/* Initialize UART Configuration parameter structure to default state:
* Baudrate = 9600bps
* 8 data bit
* 1 Stop bit
* None parity
*/
UART_ConfigStructInit(&UARTConfigStruct);
// Re-configure baudrate to 115200bps
UARTConfigStruct.Baud_rate = 115200;
// Re-configure baudrate to 115200bps
UARTConfigStruct.Baud_rate = 115200;
// Initialize DEBUG_UART_PORT peripheral with given to corresponding parameter
UART_Init((LPC_UART_TypeDef *)DEBUG_UART_PORT, &UARTConfigStruct);
// Initialize DEBUG_UART_PORT peripheral with given to corresponding parameter
UART_Init((LPC_UART_TypeDef *)DEBUG_UART_PORT, &UARTConfigStruct);
// Enable UART Transmit
UART_TxCmd((LPC_UART_TypeDef *)DEBUG_UART_PORT, ENABLE);
// Enable UART Transmit
UART_TxCmd((LPC_UART_TypeDef *)DEBUG_UART_PORT, ENABLE);
debug_frmwrk_initialized = TRUE;
}
#endif /*_DBGFWK */
/* --------------------------------- End Of File ------------------------------ */
#endif // _DBGFWK

Loading…
Cancel
Save