M355 S0, S1 fixes & faster LCD, SD card

fix Travis error
2.0.x
Christopher Pepper 8 years ago committed by Bob-the-Kuhn
parent 8c622a59cf
commit bea3ec2724

3
.gitignore vendored

@ -158,6 +158,9 @@ src/.vs/
#Visual Studio Code #Visual Studio Code
.vscode .vscode
#Visual Studio Code
.vscode
#cmake #cmake
CMakeLists.txt CMakeLists.txt
src/CMakeLists.txt src/CMakeLists.txt

@ -1233,8 +1233,9 @@
* SD CARD: SPI SPEED * SD CARD: SPI SPEED
* *
* Enable one of the following items for a slower SPI transfer speed. * Enable one of the following items for a slower SPI transfer speed.
* This may be required to resolve "volume init" errors. * This may be required to resolve "volume init" errors or LCD issues.
*/ */
//#define SPI_SPEED SPI_HALF_SPEED //#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED //#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED //#define SPI_SPEED SPI_EIGHTH_SPEED

@ -29,53 +29,7 @@
#ifndef _HAL_H #ifndef _HAL_H
#define _HAL_H #define _HAL_H
#include <stdint.h> #include "src/inc/SPI.h"
/**
* SPI speed where 0 <= index <= 6
*
* Approximate rates :
*
* 0 : 8 - 10 MHz
* 1 : 4 - 5 MHz
* 2 : 2 - 2.5 MHz
* 3 : 1 - 1.25 MHz
* 4 : 500 - 625 kHz
* 5 : 250 - 312 kHz
* 6 : 125 - 156 kHz
*
* On AVR, actual speed is F_CPU/2^(1 + index).
* On other platforms, speed should be in range given above where possible.
*/
/** Set SCK to max rate */
uint8_t const SPI_FULL_SPEED = 0;
/** Set SCK rate to half max rate. */
uint8_t const SPI_HALF_SPEED = 1;
/** Set SCK rate to quarter max rate. */
uint8_t const SPI_QUARTER_SPEED = 2;
/** Set SCK rate to 1/8 max rate. */
uint8_t const SPI_EIGHTH_SPEED = 3;
/** Set SCK rate to 1/16 of max rate. */
uint8_t const SPI_SIXTEENTH_SPEED = 4;
/** Set SCK rate to 1/32 of max rate. */
uint8_t const SPI_SPEED_5 = 5;
/** Set SCK rate to 1/64 of max rate. */
uint8_t const SPI_SPEED_6 = 6;
// Standard SPI functions
/** Initialise SPI bus */
void spiBegin(void);
/** Configure SPI for specified SPI speed */
void spiInit(uint8_t spiRate);
/** Write single byte to SPI */
void spiSend(uint8_t b);
/** Read single byte from SPI */
uint8_t spiRec(void);
/** Read from SPI into buffer */
void spiRead(uint8_t* buf, uint16_t nbyte);
/** Write token and then write from 512 byte buffer to SPI (for SD card) */
void spiSendBlock(uint8_t token, const uint8_t* buf);
#ifdef __AVR__ #ifdef __AVR__
#include "HAL_AVR/HAL_AVR.h" #include "HAL_AVR/HAL_AVR.h"

@ -1,6 +1,6 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
* Based on Sprinter and grbl. * Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
@ -30,13 +30,32 @@
* For TARGET_LPC1768 * For TARGET_LPC1768
*/ */
/**
* Hardware SPI and a software SPI implementations are included in this file.
* The hardware SPI runs faster and has higher throughput but is not compatible
* with some LCD interfaces/adapters.
*
* Control of the slave select pin(s) is handled by the calling routines.
*
* Some of the LCD interfaces/adapters result in the LCD SPI and the SD card
* SPI sharing pins. The SCK, MOSI & MISO pins can NOT be set/cleared with
* WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is
* active. If any of these pins are shared then the software SPI must be used.
*
* A more sophisticated hardware SPI can be found at the following link. This
* implementation has not been fully debugged.
* https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e
*/
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Includes // Includes
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
#include "../../inc/MarlinConfig.h" //#include "../../../MarlinConfig.h" //works except in U8g
#include "spi_pins.h"
#include "fastio.h"
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Public Variables // Public Variables
@ -47,13 +66,60 @@
// Public functions // Public functions
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
#if ENABLED(SOFTWARE_SPI) #if ENABLED(LPC_SOFTWARE_SPI)
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// software SPI // software SPI
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// bitbanging transfer
// run at ~100KHz (necessary for init) /**
static uint8_t spiTransfer(uint8_t b) { // using Mode 0 * This software SPI runs at three rates. The SD software provides an index
* (spiRate) of 0-6. The mapping is:
* 0-1 - about 5 MHz peak
* 2-3 - about 2 MHz peak
* all others - about 250 KHz
*/
static uint8_t SPI_speed = 0;
static uint8_t spiTransfer(uint8_t b) {
if (!SPI_speed) { // fastest - about 5 MHz peak
for (int bits = 0; bits < 8; bits++) {
if (b & 0x80) {
WRITE(MOSI_PIN, HIGH);
WRITE(MOSI_PIN, HIGH); // delay to (hopefully) guarantee setup time
}
else {
WRITE(MOSI_PIN, LOW);
WRITE(MOSI_PIN, LOW); // delay to (hopefully) guarantee setup time
}
b <<= 1;
WRITE(SCK_PIN, HIGH);
if (READ(MISO_PIN)) {
b |= 1;
}
WRITE(SCK_PIN, LOW);
}
}
else if (SPI_speed == 1) { // medium - about 1 MHz
for (int bits = 0; bits < 8; bits++) {
if (b & 0x80) {
for (uint8_t i = 0; i < 8; i++) WRITE(MOSI_PIN, HIGH);
}
else {
for (uint8_t i = 0; i < 8; i++) WRITE(MOSI_PIN, LOW);
}
b <<= 1;
for (uint8_t i = 0; i < 6; i++) WRITE(SCK_PIN, HIGH);
if (READ(MISO_PIN)) {
b |= 1;
}
WRITE(SCK_PIN, LOW);
}
}
else { // slow - about 250 KHz
for (int bits = 0; bits < 8; bits++) { for (int bits = 0; bits < 8; bits++) {
if (b & 0x80) { if (b & 0x80) {
WRITE(MOSI_PIN, HIGH); WRITE(MOSI_PIN, HIGH);
@ -62,72 +128,60 @@
WRITE(MOSI_PIN, LOW); WRITE(MOSI_PIN, LOW);
} }
b <<= 1; b <<= 1;
delayMicroseconds(1U);
WRITE(SCK_PIN, HIGH); WRITE(SCK_PIN, HIGH);
delayMicroseconds(3U); delayMicroseconds(2U);
if (READ(MISO_PIN)) { if (READ(MISO_PIN)) {
b |= 1; b |= 1;
} }
WRITE(SCK_PIN, LOW); WRITE(SCK_PIN, LOW);
delayMicroseconds(3U); delayMicroseconds(1U);
}
} }
return b; return b;
} }
void spiBegin() { void spiBegin() {
SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH);
SET_OUTPUT(SCK_PIN); SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN); SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN); SET_OUTPUT(MOSI_PIN);
} }
void spiInit(uint8_t spiRate) { void spiInit(uint8_t spiRate) {
UNUSED(spiRate); SPI_speed = spiRate >> 1;
WRITE(SS_PIN, HIGH);
WRITE(MOSI_PIN, HIGH); WRITE(MOSI_PIN, HIGH);
WRITE(SCK_PIN, LOW); WRITE(SCK_PIN, LOW);
} }
uint8_t spiRec() { uint8_t spiRec() {
WRITE(SS_PIN, LOW);
uint8_t b = spiTransfer(0xff); uint8_t b = spiTransfer(0xff);
WRITE(SS_PIN, HIGH);
return b; return b;
} }
void spiRead(uint8_t*buf, uint16_t nbyte) { void spiRead(uint8_t*buf, uint16_t nbyte) {
if (nbyte == 0) return; if (nbyte == 0) return;
WRITE(SS_PIN, LOW);
for (int i = 0; i < nbyte; i++) { for (int i = 0; i < nbyte; i++) {
buf[i] = spiTransfer(0xff); buf[i] = spiTransfer(0xff);
} }
WRITE(SS_PIN, HIGH);
} }
void spiSend(uint8_t b) { void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
uint8_t response = spiTransfer(b); uint8_t response = spiTransfer(b);
UNUSED(response); UNUSED(response);
WRITE(SS_PIN, HIGH);
} }
static void spiSend(const uint8_t* buf, size_t n) { static void spiSend(const uint8_t* buf, size_t n) {
uint8_t response; uint8_t response;
if (n == 0) return; if (n == 0) return;
WRITE(SS_PIN, LOW);
for (uint16_t i = 0; i < n; i++) { for (uint16_t i = 0; i < n; i++) {
response = spiTransfer(buf[i]); response = spiTransfer(buf[i]);
} }
UNUSED(response); UNUSED(response);
WRITE(SS_PIN, HIGH);
} }
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
uint8_t response; uint8_t response;
WRITE(SS_PIN, LOW);
response = spiTransfer(token); response = spiTransfer(token);
for (uint16_t i = 0; i < 512; i++) { for (uint16_t i = 0; i < 512; i++) {
@ -136,29 +190,97 @@
UNUSED(response); UNUSED(response);
WRITE(SS_PIN, HIGH); WRITE(SS_PIN, HIGH);
} }
#else #else
void spiBegin() {
// hardware SPI
#include <lpc17xx_pinsel.h>
#include <lpc17xx_ssp.h>
#include <lpc17xx_clkpwr.h>
void spiBegin() { // setup SCK, MOSI & MISO pins for SSP0
PINSEL_CFG_Type PinCfg; // data structure to hold init values
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = pin_map[SCK_PIN].pin;
PinCfg.Portnum = pin_map[SCK_PIN].port;
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(SCK_PIN);
PinCfg.Pinnum = pin_map[MISO_PIN].pin;
PinCfg.Portnum = pin_map[MISO_PIN].port;
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(MISO_PIN);
PinCfg.Pinnum = pin_map[MOSI_PIN].pin;
PinCfg.Portnum = pin_map[MOSI_PIN].port;
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(MOSI_PIN);
} }
void spiInit(uint8_t spiRate) { void spiInit(uint8_t spiRate) {
// table to convert Marlin spiRates (0-5 plus default) into bit rates
uint32_t Marlin_speed[7]; // CPSR is always 2
Marlin_speed[0] = 8333333; //(SCR: 2) desired: 8,000,000 actual: 8,333,333 +4.2% SPI_FULL_SPEED
Marlin_speed[1] = 4166667; //(SCR: 5) desired: 4,000,000 actual: 4,166,667 +4.2% SPI_HALF_SPEED
Marlin_speed[2] = 2083333; //(SCR: 11) desired: 2,000,000 actual: 2,083,333 +4.2% SPI_QUARTER_SPEED
Marlin_speed[3] = 1000000; //(SCR: 24) desired: 1,000,000 actual: 1,000,000 SPI_EIGHTH_SPEED
Marlin_speed[4] = 500000; //(SCR: 49) desired: 500,000 actual: 500,000 SPI_SPEED_5
Marlin_speed[5] = 250000; //(SCR: 99) desired: 250,000 actual: 250,000 SPI_SPEED_6
Marlin_speed[6] = 125000; //(SCR:199) desired: 125,000 actual: 125,000 Default from HAL.h
// select 50MHz PCLK for SSP0
CLKPWR_SetPCLKDiv(CLKPWR_PCLKSEL_SSP0, CLKPWR_PCLKSEL_CCLK_DIV_2);
// setup for SPI mode
SSP_CFG_Type HW_SPI_init; // data structure to hold init values
SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode
HW_SPI_init.ClockRate = Marlin_speed[MIN(spiRate, 6)]; // put in the specified bit rate
SSP_Init(LPC_SSP0, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers
SSP_Cmd(LPC_SSP0, ENABLE); // start SSP0 running
} }
void spiSend(byte b) { void spiSend(uint8_t b) {
while (!SSP_GetStatus(LPC_SSP0, SSP_STAT_TXFIFO_NOTFULL)); // wait for room in the buffer
SSP_SendData(LPC_SSP0, b & 0x00FF);
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
} }
void spiSend(const uint8_t* buf, size_t n) { void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return;
for (uint16_t i = 0; i < n; i++) {
while (!SSP_GetStatus(LPC_SSP0, SSP_STAT_TXFIFO_NOTFULL)); // wait for room in the buffer
SSP_SendData(LPC_SSP0, buf[i] & 0x00FF);
}
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
} }
void spiSend(uint32_t chan, byte b) { void spiSend(uint32_t chan, byte b) {
} }
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) { void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
}
uint8_t get_one_byte() {
// send a dummy byte so can clock in receive data
SSP_SendData(LPC_SSP0,0x00FF);
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
return SSP_ReceiveData(LPC_SSP0) & 0x00FF;
} }
// Read single byte from SPI // Read single byte from SPI
uint8_t spiRec() { uint8_t spiRec() {
return 0; while (SSP_GetStatus(LPC_SSP0, SSP_STAT_RXFIFO_NOTEMPTY) || SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)) SSP_ReceiveData(LPC_SSP0); //flush the receive buffer
return get_one_byte();
} }
uint8_t spiRec(uint32_t chan) { uint8_t spiRec(uint32_t chan) {
@ -167,11 +289,17 @@
// Read from SPI into buffer // Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) { void spiRead(uint8_t*buf, uint16_t nbyte) {
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_RXFIFO_NOTEMPTY) || SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)) SSP_ReceiveData(LPC_SSP0); //flush the receive buffer
if (nbyte == 0) return;
for (int i = 0; i < nbyte; i++) {
buf[i] = get_one_byte();
}
} }
// Write from buffer to SPI // Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
} }
#endif // ENABLED(SOFTWARE_SPI) #endif // ENABLED(LPC_SOFTWARE_SPI)
#endif // TARGET_LPC1768 #endif // TARGET_LPC1768

@ -399,6 +399,16 @@ bool LPC1768_PWM_detach_pin(uint8_t pin) {
return 1; return 1;
} }
bool useable_hardware_PWM(uint8_t pin) {
COPY_ACTIVE_TABLE; // copy active table into work table
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if it's already setup
if (work_table[i].logical_pin == pin && work_table[i].sequence) return true;
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if there is an empty slot
if (!work_table[i].sequence) return true;
return false; // only get here if neither the above are true
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void) #define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void)

@ -38,6 +38,9 @@
#include "arduino.h" #include "arduino.h"
#include "pinmapping.h" #include "pinmapping.h"
bool useable_hardware_PWM(uint8_t pin);
#define USEABLE_HARDWARE_PWM(pin) useable_hardware_PWM(pin)
#define LPC_PORT_OFFSET (0x0020) #define LPC_PORT_OFFSET (0x0020)
#define LPC_PIN(pin) (1UL << pin) #define LPC_PIN(pin) (1UL << pin)
#define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port)) #define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port))

@ -23,7 +23,8 @@
#ifndef SPI_PINS_LPC1768_H #ifndef SPI_PINS_LPC1768_H
#define SPI_PINS_LPC1768_H #define SPI_PINS_LPC1768_H
#define SOFTWARE_SPI #define LPC_SOFTWARE_SPI
/** onboard SD card */ /** onboard SD card */
//#define SCK_PIN P0_7 //#define SCK_PIN P0_7
//#define MISO_PIN P0_8 //#define MISO_PIN P0_8
@ -34,4 +35,10 @@
#define MISO_PIN 50 //P0_17 #define MISO_PIN 50 //P0_17
#define MOSI_PIN 51 //P0_18 #define MOSI_PIN 51 //P0_18
#define SS_PIN 53 //P1_23 #define SS_PIN 53 //P1_23
#define SDSS SS_PIN
#if (defined(IS_REARM) && !(defined(LPC_SOFTWARE_SPI))) // signal LCDs that they need to use the hardware SPI
#define SHARED_SPI
#endif
#endif /* SPI_PINS_LPC1768_H */ #endif /* SPI_PINS_LPC1768_H */

@ -27,19 +27,38 @@
uint8_t case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS; uint8_t case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
bool case_light_on = CASE_LIGHT_DEFAULT_ON; bool case_light_on = CASE_LIGHT_DEFAULT_ON;
/**
* The following are needed because ARM chips ignore a "WRITE(CASE_LIGHT_PIN,x)" command to the pins that
* are directly controlled by the PWM module. In order to turn them off the brightness level needs to be
* set to off. Since we can't use the pwm register to save the last brightness level we need a variable
* to save it.
*/
uint8_t case_light_brightness_sav; // saves brighness info so can restore when "M355 S1" received
bool case_light_arg_flag; // flag to notify if S or P arguement type
#ifndef INVERT_CASE_LIGHT #ifndef INVERT_CASE_LIGHT
#define INVERT_CASE_LIGHT false #define INVERT_CASE_LIGHT false
#endif #endif
void update_case_light() { void update_case_light() {
SET_OUTPUT(CASE_LIGHT_PIN); SET_OUTPUT(CASE_LIGHT_PIN);
if (!(case_light_arg_flag && !case_light_on))
case_light_brightness_sav = case_light_brightness; // save brightness except if this is an S0 arguement
if (case_light_arg_flag && case_light_on)
case_light_brightness = case_light_brightness_sav; // restore last brightens if this is an S1 arguement
if (case_light_on) { if (case_light_on) {
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) { if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness ); analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
} }
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH); else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
} }
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW); else {
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0 ); // turn the light off
WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
}
} }
#endif // HAS_CASE_LIGHT #endif // HAS_CASE_LIGHT

@ -25,6 +25,8 @@
extern uint8_t case_light_brightness; extern uint8_t case_light_brightness;
extern bool case_light_on; extern bool case_light_on;
extern uint8_t case_light_brightness_sav; // saves brighness info when case_light_on is false
extern bool case_light_arg_flag; // flag to notify if S or P arguement type
void update_case_light(); void update_case_light();

@ -43,8 +43,14 @@
void GcodeSuite::M355() { void GcodeSuite::M355() {
#if HAS_CASE_LIGHT #if HAS_CASE_LIGHT
uint8_t args = 0; uint8_t args = 0;
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte(); if (parser.seenval('P')) {
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool(); ++args, case_light_brightness = parser.value_byte();
case_light_arg_flag = false;
}
if (parser.seenval('S')) {
++args, case_light_on = parser.value_bool();
case_light_arg_flag = true;
}
if (args) update_case_light(); if (args) update_case_light();
// always report case light status // always report case light status

@ -26,6 +26,7 @@
#include "../core/boards.h" #include "../core/boards.h"
#include "../core/macros.h" #include "../core/macros.h"
#include "Version.h" #include "Version.h"
#include "SPI.h"
#include "../../Configuration.h" #include "../../Configuration.h"
#include "Conditionals_LCD.h" #include "Conditionals_LCD.h"
#include "../../Configuration_adv.h" #include "../../Configuration_adv.h"

@ -0,0 +1,52 @@
#include <stdint.h>
#if !defined(SPI_FULL_SPEED)
/**
* SPI speed where 0 <= index <= 6
*
* Approximate rates :
*
* 0 : 8 - 10 MHz
* 1 : 4 - 5 MHz
* 2 : 2 - 2.5 MHz
* 3 : 1 - 1.25 MHz
* 4 : 500 - 625 kHz
* 5 : 250 - 312 kHz
* 6 : 125 - 156 kHz
*
* On AVR, actual speed is F_CPU/2^(1 + index).
* On other platforms, speed should be in range given above where possible.
*/
/** Set SCK to max rate */
#define SPI_FULL_SPEED 0
/** Set SCK rate to half max rate. */
#define SPI_HALF_SPEED 1
/** Set SCK rate to quarter max rate. */
#define SPI_QUARTER_SPEED 2
/** Set SCK rate to 1/8 max rate. */
#define SPI_EIGHTH_SPEED 3
/** Set SCK rate to 1/16 of max rate. */
#define SPI_SIXTEENTH_SPEED 4
/** Set SCK rate to 1/32 of max rate. */
#define SPI_SPEED_5 5
/** Set SCK rate to 1/64 of max rate. */
#define SPI_SPEED_6 6
// Standard SPI functions
/** Initialise SPI bus */
void spiBegin(void);
/** Configure SPI for specified SPI speed */
void spiInit(uint8_t spiRate);
/** Write single byte to SPI */
void spiSend(uint8_t b);
/** Read single byte from SPI */
uint8_t spiRec(void);
/** Read from SPI into buffer */
void spiRead(uint8_t* buf, uint16_t nbyte);
/** Write token and then write from 512 byte buffer to SPI (for SD card) */
void spiSendBlock(uint8_t token, const uint8_t* buf);
#endif

@ -23,20 +23,21 @@
#ifndef ULCDST7565_H #ifndef ULCDST7565_H
#define ULCDST7565_H #define ULCDST7565_H
#include "../../inc/MarlinConfig.h" #include <src/Marlin.h>
#if ENABLED(U8GLIB_ST7565_64128N)
#if !( defined(DOGLCD_SCK) && DOGLCD_SCK >= 0 \
&& defined(DOGLCD_MOSI) && DOGLCD_MOSI >= 0 \
&& defined(DOGLCD_CS) && DOGLCD_CS >= 0 \
&& defined(DOGLCD_A0) && DOGLCD_A0 >= 0 )
#error "DOGLCD_SCK, DOGLCD_MOSI, DOGLCD_CS, and DOGLCD_A0 are required for VIKI."
#endif
#define ST7565_CLK_PIN DOGLCD_SCK #define ST7565_CLK_PIN DOGLCD_SCK
#define ST7565_DAT_PIN DOGLCD_MOSI #define ST7565_DAT_PIN DOGLCD_MOSI
#define ST7565_CS_PIN DOGLCD_CS #define ST7565_CS_PIN DOGLCD_CS
#define ST7565_A0_PIN DOGLCD_A0 #define ST7565_A0_PIN DOGLCD_A0
#include <U8glib.h> #include <U8glib.h>
#define WIDTH 128 #define WIDTH 128
@ -91,14 +92,21 @@
#define ST7565_DELAY_3 CPU_ST7565_DELAY_3 #define ST7565_DELAY_3 CPU_ST7565_DELAY_3
#endif #endif
#define ST7565_SND_BIT \
#if ENABLED(SHARED_SPI) // Re-ARM requires that the LCD and the SD card share a single SPI
#define ST7565_WRITE_BYTE(a) { spiSend((uint8_t)a); U8G_DELAY; }
#define ST7560_WriteSequence(count, pointer) { uint8_t *ptr = pointer; for (uint8_t i = 0; i < count; i++) {spiSend( *ptr++);} DELAY_10US; }
#else
#define ST7565_SND_BIT \
WRITE(ST7565_CLK_PIN, LOW); ST7565_DELAY_1; \ WRITE(ST7565_CLK_PIN, LOW); ST7565_DELAY_1; \
WRITE(ST7565_DAT_PIN, val & 0x80); ST7565_DELAY_2; \ WRITE(ST7565_DAT_PIN, val & 0x80); ST7565_DELAY_2; \
WRITE(ST7565_CLK_PIN, HIGH); ST7565_DELAY_3; \ WRITE(ST7565_CLK_PIN, HIGH); ST7565_DELAY_3; \
WRITE(ST7565_CLK_PIN, LOW);\ WRITE(ST7565_CLK_PIN, LOW);\
val <<= 1 val <<= 1
static void ST7565_SWSPI_SND_8BIT(uint8_t val) { static void ST7565_SWSPI_SND_8BIT(uint8_t val) {
ST7565_SND_BIT; // 1 ST7565_SND_BIT; // 1
ST7565_SND_BIT; // 2 ST7565_SND_BIT; // 2
ST7565_SND_BIT; // 3 ST7565_SND_BIT; // 3
@ -107,7 +115,11 @@ static void ST7565_SWSPI_SND_8BIT(uint8_t val) {
ST7565_SND_BIT; // 6 ST7565_SND_BIT; // 6
ST7565_SND_BIT; // 7 ST7565_SND_BIT; // 7
ST7565_SND_BIT; // 8 ST7565_SND_BIT; // 8
} }
#define ST7565_WRITE_BYTE(a) { ST7565_SWSPI_SND_8BIT((uint8_t)a); U8G_DELAY; }
#define ST7560_WriteSequence(count, pointer) { uint8_t *ptr = pointer; for (uint8_t i = 0; i < count; i++) {ST7565_SWSPI_SND_8BIT( *ptr++);} DELAY_10US; }
#endif
#if defined(DOGM_SPI_DELAY_US) && DOGM_SPI_DELAY_US > 0 #if defined(DOGM_SPI_DELAY_US) && DOGM_SPI_DELAY_US > 0
#define U8G_DELAY delayMicroseconds(DOGM_SPI_DELAY_US) #define U8G_DELAY delayMicroseconds(DOGM_SPI_DELAY_US)
@ -115,116 +127,128 @@ static void ST7565_SWSPI_SND_8BIT(uint8_t val) {
#define U8G_DELAY u8g_10MicroDelay() #define U8G_DELAY u8g_10MicroDelay()
#endif #endif
#define ST7565_CS() do{ WRITE(ST7565_CS_PIN, HIGH); U8G_DELAY; }while(0) #define ST7565_CS() { WRITE(ST7565_CS_PIN,1); U8G_DELAY; }
#define ST7565_NCS() WRITE(ST7565_CS_PIN, LOW) #define ST7565_NCS() { WRITE(ST7565_CS_PIN,0); }
#define ST7565_A0() do{ WRITE(ST7565_A0_PIN, HIGH); U8G_DELAY; }while(0) #define ST7565_A0() { WRITE(ST7565_A0_PIN,1); U8G_DELAY; }
#define ST7565_NA0() WRITE(ST7565_A0_PIN, LOW) #define ST7565_NA0() { WRITE(ST7565_A0_PIN,0); }
#define ST7565_WRITE_BYTE(a) do{ ST7565_SWSPI_SND_8BIT((uint8_t)a); U8G_DELAY; }while(0)
#define ST7560_WriteSequence(count, pointer) do{ uint8_t *ptr = pointer; for (uint8_t i = 0; i < count; ++i) { ST7565_SWSPI_SND_8BIT(*ptr++); } DELAY_10US; }while(0)
uint8_t u8g_dev_st7565_64128n_2x_VIKI_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) { uint8_t u8g_dev_st7565_64128n_2x_VIKI_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch (msg) { switch (msg) {
case U8G_DEV_MSG_INIT: { case U8G_DEV_MSG_INIT:
{
OUT_WRITE(ST7565_CS_PIN, LOW); OUT_WRITE(ST7565_CS_PIN, LOW);
#if ENABLED(SHARED_SPI)
u8g_Delay(250);
spiBegin();
#ifndef SPI_SPEED
#define SPI_SPEED SPI_FULL_SPEED // use same SPI speed as SD card
#endif
spiInit(SPI_SPEED);
#else
OUT_WRITE(ST7565_DAT_PIN, LOW); OUT_WRITE(ST7565_DAT_PIN, LOW);
OUT_WRITE(ST7565_CLK_PIN, LOW); OUT_WRITE(ST7565_CLK_PIN, LOW);
#endif
OUT_WRITE(ST7565_A0_PIN, LOW); OUT_WRITE(ST7565_A0_PIN, LOW);
ST7565_CS(); // disable chip ST7565_CS(); /* disable chip */
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_NCS(); // enable chip ST7565_NCS(); /* enable chip */
ST7565_WRITE_BYTE(0xA2); // 0xA2: LCD bias 1/9 (according to Displaytech 64128N datasheet)
ST7565_WRITE_BYTE(0xA0); // Normal ADC Select (according to Displaytech 64128N datasheet)
ST7565_WRITE_BYTE(0xC8); // common output mode: set scan direction normal operation/SHL Select; 0xC0 --> SHL = 0; normal; 0xC8 --> SHL = 1 ST7565_WRITE_BYTE(0x0A2); /* 0x0a2: LCD bias 1/9 (according to Displaytech 64128N datasheet) */
ST7565_WRITE_BYTE(0x40); // Display start line for Displaytech 64128N ST7565_WRITE_BYTE(0x0A0); /* Normal ADC Select (according to Displaytech 64128N datasheet) */
ST7565_WRITE_BYTE(0x28 | 0x04); // power control: turn on voltage converter ST7565_WRITE_BYTE(0x0c8); /* common output mode: set scan direction normal operation/SHL Select; 0x0c0 --> SHL = 0; normal; 0x0c8 --> SHL = 1 */
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used ST7565_WRITE_BYTE(0x040); /* Display start line for Displaytech 64128N */
ST7565_WRITE_BYTE(0x28 | 0x06); // power control: turn on voltage regulator ST7565_WRITE_BYTE(0x028 | 0x04); /* power control: turn on voltage converter */
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used // U8G_ESC_DLY(50); /* delay 50 ms - hangs after a reset if used */
ST7565_WRITE_BYTE(0x28 | 0x07); // power control: turn on voltage follower ST7565_WRITE_BYTE(0x028 | 0x06); /* power control: turn on voltage regulator */
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used // U8G_ESC_DLY(50); /* delay 50 ms - hangs after a reset if used */
ST7565_WRITE_BYTE(0x10); // Set V0 voltage resistor ratio. Setting for controlling brightness of Displaytech 64128N ST7565_WRITE_BYTE(0x028 | 0x07); /* power control: turn on voltage follower */
// U8G_ESC_DLY(50); /* delay 50 ms - hangs after a reset if used */
ST7565_WRITE_BYTE(0xA6); // display normal, bit val 0: LCD pixel off.
ST7565_WRITE_BYTE(0x81); // set contrast ST7565_WRITE_BYTE(0x010); /* Set V0 voltage resistor ratio. Setting for controlling brightness of Displaytech 64128N */
ST7565_WRITE_BYTE(0x1E); // Contrast value. Setting for controlling brightness of Displaytech 64128N
ST7565_WRITE_BYTE(0xAF); // display on ST7565_WRITE_BYTE(0x0a6); /* display normal, bit val 0: LCD pixel off. */
U8G_ESC_DLY(100); // delay 100 ms ST7565_WRITE_BYTE(0x081); /* set contrast */
ST7565_WRITE_BYTE(0xA5); // display all points; ST7565 ST7565_WRITE_BYTE(0x01e); /* Contrast value. Setting for controlling brightness of Displaytech 64128N */
U8G_ESC_DLY(100); // delay 100 ms
U8G_ESC_DLY(100); // delay 100 ms
ST7565_WRITE_BYTE(0xA4); // normal display ST7565_WRITE_BYTE(0x0af); /* display on */
ST7565_CS(); // disable chip
} // end of sequence U8G_ESC_DLY(100); /* delay 100 ms */
ST7565_WRITE_BYTE(0x0a5); /* display all points; ST7565 */
U8G_ESC_DLY(100); /* delay 100 ms */
U8G_ESC_DLY(100); /* delay 100 ms */
ST7565_WRITE_BYTE(0x0a4); /* normal display */
ST7565_CS(); /* disable chip */
} /* end of sequence */
break; break;
case U8G_DEV_MSG_STOP: case U8G_DEV_MSG_STOP:
break; break;
case U8G_DEV_MSG_PAGE_NEXT: { case U8G_DEV_MSG_PAGE_NEXT:
u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem); { u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem);
ST7565_CS(); // disable chip ST7565_CS(); /* disable chip */
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_NCS(); // enable chip ST7565_NCS(); /* enable chip */
ST7565_WRITE_BYTE(0x10); // set upper 4 bit of the col adr to 0x10 ST7565_WRITE_BYTE(0x010); /* set upper 4 bit of the col adr to 0x10 */
ST7565_WRITE_BYTE(0x00); // set lower 4 bit of the col adr to 0x00. Changed for DisplayTech 64128N ST7565_WRITE_BYTE(0x000); /* set lower 4 bit of the col adr to 0x00. Changed for DisplayTech 64128N */
// end of sequence /* end of sequence */
ST7565_WRITE_BYTE(0xB0 | (2 * pb->p.page)); // select current page (ST7565R) ST7565_WRITE_BYTE(0x0b0 | (2*pb->p.page));; /* select current page (ST7565R) */
ST7565_A0(); // data mode ST7565_A0(); /* data mode */
ST7560_WriteSequence((uint8_t)pb->width, (uint8_t*)pb->buf); ST7560_WriteSequence( (uint8_t) pb->width, (uint8_t *)pb->buf);
ST7565_CS(); // disable chip ST7565_CS(); /* disable chip */
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_NCS(); // enable chip ST7565_NCS(); /* enable chip */
ST7565_WRITE_BYTE(0x10); // set upper 4 bit of the col adr to 0x10 ST7565_WRITE_BYTE(0x010); /* set upper 4 bit of the col adr to 0x10 */
ST7565_WRITE_BYTE(0x00); // set lower 4 bit of the col adr to 0x00. Changed for DisplayTech 64128N ST7565_WRITE_BYTE(0x000); /* set lower 4 bit of the col adr to 0x00. Changed for DisplayTech 64128N */
// end of sequence /* end of sequence */
ST7565_WRITE_BYTE(0xB0 | (2 * pb->p.page + 1)); // select current page (ST7565R) ST7565_WRITE_BYTE(0x0b0 | (2*pb->p.page+1)); /* select current page (ST7565R) */
ST7565_A0(); // data mode ST7565_A0(); /* data mode */
ST7560_WriteSequence((uint8_t)pb->width, (uint8_t*)(pb->buf)+pb->width); ST7560_WriteSequence( (uint8_t) pb->width, (uint8_t *)(pb->buf)+pb->width);
ST7565_CS(); // disable chip ST7565_CS(); /* disable chip */
} }
break; break;
case U8G_DEV_MSG_CONTRAST: case U8G_DEV_MSG_CONTRAST:
ST7565_NCS(); ST7565_NCS();
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_WRITE_BYTE(0x81); ST7565_WRITE_BYTE(0x081);
ST7565_WRITE_BYTE((*(uint8_t *)arg) >> 2); ST7565_WRITE_BYTE((*(uint8_t *)arg) >> 2);
ST7565_CS(); // disable chip ST7565_CS(); /* disable chip */
return 1; return 1;
case U8G_DEV_MSG_SLEEP_ON: case U8G_DEV_MSG_SLEEP_ON:
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_NCS(); // enable chip ST7565_NCS(); /* enable chip */
ST7565_WRITE_BYTE(0xAC); // static indicator off ST7565_WRITE_BYTE(0x0ac); /* static indicator off */
ST7565_WRITE_BYTE(0x00); // indicator register set (not sure if this is required) ST7565_WRITE_BYTE(0x000); /* indicator register set (not sure if this is required) */
ST7565_WRITE_BYTE(0xAE); // display off ST7565_WRITE_BYTE(0x0ae); /* display off */
ST7565_WRITE_BYTE(0xA5); // all points on ST7565_WRITE_BYTE(0x0a5); /* all points on */
ST7565_CS(); // disable chip , bugfix 12 nov 2014 ST7565_CS(); /* disable chip , bugfix 12 nov 2014 */
// end of sequence /* end of sequence */
return 1; return 1;
case U8G_DEV_MSG_SLEEP_OFF: case U8G_DEV_MSG_SLEEP_OFF:
ST7565_NA0(); // instruction mode ST7565_NA0(); /* instruction mode */
ST7565_NCS(); // enable chip ST7565_NCS(); /* enable chip */
ST7565_WRITE_BYTE(0xA4); // all points off ST7565_WRITE_BYTE(0x0a4); /* all points off */
ST7565_WRITE_BYTE(0xAF); // display on ST7565_WRITE_BYTE(0x0af); /* display on */
U8G_ESC_DLY(50); // delay 50 ms U8G_ESC_DLY(50); /* delay 50 ms */
ST7565_CS(); // disable chip , bugfix 12 nov 2014 ST7565_CS(); /* disable chip , bugfix 12 nov 2014 */
// end of sequence /* end of sequence */
return 1; return 1;
} }
return u8g_dev_pb16v1_base_fn(u8g, dev, msg, arg); return u8g_dev_pb16v1_base_fn(u8g, dev, msg, arg);
} }
uint8_t u8g_dev_st7565_64128n_2x_VIKI_buf[WIDTH*2] U8G_NOCOMMON; uint8_t u8g_dev_st7565_64128n_2x_VIKI_buf[WIDTH*2] U8G_NOCOMMON ;
u8g_pb_t u8g_dev_st7565_64128n_2x_VIKI_pb = { { 16, HEIGHT, 0, 0, 0 }, WIDTH, u8g_dev_st7565_64128n_2x_VIKI_buf }; u8g_pb_t u8g_dev_st7565_64128n_2x_VIKI_pb = { {16, HEIGHT, 0, 0, 0}, WIDTH, u8g_dev_st7565_64128n_2x_VIKI_buf};
u8g_dev_t u8g_dev_st7565_64128n_2x_VIKI_sw_spi = { u8g_dev_st7565_64128n_2x_VIKI_fn, &u8g_dev_st7565_64128n_2x_VIKI_pb, &u8g_com_null_fn }; u8g_dev_t u8g_dev_st7565_64128n_2x_VIKI_sw_spi = { u8g_dev_st7565_64128n_2x_VIKI_fn, &u8g_dev_st7565_64128n_2x_VIKI_pb, &u8g_com_null_fn};
class U8GLIB_ST7565_64128n_2x_VIKI : public U8GLIB { class U8GLIB_ST7565_64128n_2x_VIKI : public U8GLIB {
public: public:
@ -236,6 +260,9 @@ class U8GLIB_ST7565_64128n_2x_VIKI : public U8GLIB {
{ } { }
}; };
#pragma GCC reset_options #pragma GCC reset_options
#endif // U8GLIB_ST7565
#endif // ULCDST7565_H #endif // ULCDST7565_H

@ -23,7 +23,9 @@
#ifndef ULCDST7920_H #ifndef ULCDST7920_H
#define ULCDST7920_H #define ULCDST7920_H
#include "../../Marlin.h" #include <src/Marlin.h>
#if ENABLED(U8GLIB_ST7920)
#define ST7920_CLK_PIN LCD_PINS_D4 #define ST7920_CLK_PIN LCD_PINS_D4
#define ST7920_DAT_PIN LCD_PINS_ENABLE #define ST7920_DAT_PIN LCD_PINS_ENABLE
@ -80,13 +82,28 @@
#define ST7920_DELAY_3 CPU_ST7920_DELAY_3 #define ST7920_DELAY_3 CPU_ST7920_DELAY_3
#endif #endif
#define ST7920_SND_BIT \ #if defined(DOGM_SPI_DELAY_US) && DOGM_SPI_DELAY_US > 0
#define U8G_DELAY() delayMicroseconds(DOGM_SPI_DELAY_US)
#else
#define U8G_DELAY() u8g_10MicroDelay()
#endif
#if ENABLED(SHARED_SPI) // Re-ARM requires that the LCD and the SD card share a single SPI
#define ST7920_SET_CMD() { spiSend(0xF8); U8G_DELAY(); }
#define ST7920_SET_DAT() { spiSend(0xFA); U8G_DELAY(); }
#define ST7920_WRITE_BYTE(a) { spiSend((uint8_t)((a)&0xF0u)); U8G_DELAY(); spiSend((uint8_t)((a)<<4u)); U8G_DELAY(); }
#define ST7920_WRITE_BYTES(p,l) { for (uint8_t i = l + 1; --i;) { spiSend(*p&0xF0); spiSend(*p<<4); p++; } U8G_DELAY(); }
#else
#define ST7920_SND_BIT \
WRITE(ST7920_CLK_PIN, LOW); ST7920_DELAY_1; \ WRITE(ST7920_CLK_PIN, LOW); ST7920_DELAY_1; \
WRITE(ST7920_DAT_PIN, val & 0x80); ST7920_DELAY_2; \ WRITE(ST7920_DAT_PIN, val & 0x80); ST7920_DELAY_2; \
WRITE(ST7920_CLK_PIN, HIGH); ST7920_DELAY_3; \ WRITE(ST7920_CLK_PIN, HIGH); ST7920_DELAY_3; \
val <<= 1 val <<= 1
static void ST7920_SWSPI_SND_8BIT(uint8_t val) { static void ST7920_SWSPI_SND_8BIT(uint8_t val) {
ST7920_SND_BIT; // 1 ST7920_SND_BIT; // 1
ST7920_SND_BIT; // 2 ST7920_SND_BIT; // 2
ST7920_SND_BIT; // 3 ST7920_SND_BIT; // 3
@ -95,28 +112,33 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val) {
ST7920_SND_BIT; // 6 ST7920_SND_BIT; // 6
ST7920_SND_BIT; // 7 ST7920_SND_BIT; // 7
ST7920_SND_BIT; // 8 ST7920_SND_BIT; // 8
} }
#if defined(DOGM_SPI_DELAY_US) && DOGM_SPI_DELAY_US > 0 #define ST7920_SET_CMD() { ST7920_SWSPI_SND_8BIT(0xF8); U8G_DELAY(); }
#define U8G_DELAY() delayMicroseconds(DOGM_SPI_DELAY_US) #define ST7920_SET_DAT() { ST7920_SWSPI_SND_8BIT(0xFA); U8G_DELAY(); }
#else #define ST7920_WRITE_BYTE(a) { ST7920_SWSPI_SND_8BIT((uint8_t)((a)&0xF0u)); ST7920_SWSPI_SND_8BIT((uint8_t)((a)<<4u)); U8G_DELAY(); }
#define U8G_DELAY() u8g_10MicroDelay() #define ST7920_WRITE_BYTES(p,l) { for (uint8_t i = l + 1; --i;) { ST7920_SWSPI_SND_8BIT(*p&0xF0); ST7920_SWSPI_SND_8BIT(*p<<4); p++; } U8G_DELAY(); }
#endif #endif
#define ST7920_CS() { WRITE(ST7920_CS_PIN,1); U8G_DELAY(); } #define ST7920_CS() { WRITE(ST7920_CS_PIN,1); U8G_DELAY(); }
#define ST7920_NCS() { WRITE(ST7920_CS_PIN,0); } #define ST7920_NCS() { WRITE(ST7920_CS_PIN,0); }
#define ST7920_SET_CMD() { ST7920_SWSPI_SND_8BIT(0xF8); U8G_DELAY(); }
#define ST7920_SET_DAT() { ST7920_SWSPI_SND_8BIT(0xFA); U8G_DELAY(); }
#define ST7920_WRITE_BYTE(a) { ST7920_SWSPI_SND_8BIT((uint8_t)((a)&0xF0u)); ST7920_SWSPI_SND_8BIT((uint8_t)((a)<<4u)); U8G_DELAY(); }
#define ST7920_WRITE_BYTES(p,l) { for (uint8_t i = l + 1; --i;) { ST7920_SWSPI_SND_8BIT(*p&0xF0); ST7920_SWSPI_SND_8BIT(*p<<4); p++; } U8G_DELAY(); }
uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) { uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
uint8_t i, y; uint8_t i, y;
switch (msg) { switch (msg) {
case U8G_DEV_MSG_INIT: { case U8G_DEV_MSG_INIT: {
OUT_WRITE(ST7920_CS_PIN, LOW); OUT_WRITE(ST7920_CS_PIN, LOW);
#if ENABLED(SHARED_SPI)
u8g_Delay(250);
spiBegin();
spiInit(SPI_EIGHTH_SPEED); // run LCD at 1 MHz - garbled display if run at 2 MHz
#else
OUT_WRITE(ST7920_DAT_PIN, LOW); OUT_WRITE(ST7920_DAT_PIN, LOW);
OUT_WRITE(ST7920_CLK_PIN, HIGH); OUT_WRITE(ST7920_CLK_PIN, HIGH);
#endif
ST7920_CS(); ST7920_CS();
u8g_Delay(120); //initial delay for boot up u8g_Delay(120); //initial delay for boot up
@ -133,13 +155,23 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
ST7920_WRITE_BYTE(0); ST7920_WRITE_BYTE(0);
ST7920_SET_CMD(); ST7920_SET_CMD();
} }
ST7920_WRITE_BYTE(0x0C); //display on, cursor+blink off ST7920_WRITE_BYTE(0x0C); //display on, cursor+blink off
#if ENABLED(SHARED_SPI)
#ifndef SPI_SPEED
#define SPI_SPEED SPI_FULL_SPEED // switch SPI speed back to SD card speed
#endif
spiInit(SPI_SPEED);
#endif
ST7920_NCS(); ST7920_NCS();
} }
break; break;
case U8G_DEV_MSG_STOP: case U8G_DEV_MSG_STOP:
break; break;
case U8G_DEV_MSG_PAGE_NEXT: { case U8G_DEV_MSG_PAGE_NEXT: {
#if ENABLED(SHARED_SPI)
spiInit(SPI_EIGHTH_SPEED); // run LCD at 1 MHz - garbled display if run at 2 MHz
#endif
uint8_t* ptr; uint8_t* ptr;
u8g_pb_t* pb = (u8g_pb_t*)(dev->dev_mem); u8g_pb_t* pb = (u8g_pb_t*)(dev->dev_mem);
y = pb->p.page_y0; y = pb->p.page_y0;
@ -160,6 +192,9 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
ST7920_WRITE_BYTES(ptr, (LCD_PIXEL_WIDTH) / 8); //ptr is incremented inside of macro ST7920_WRITE_BYTES(ptr, (LCD_PIXEL_WIDTH) / 8); //ptr is incremented inside of macro
y++; y++;
} }
#if ENABLED(SHARED_SPI)
spiInit(SPI_SPEED); // switch SPI speed back to SD card speed
#endif
ST7920_NCS(); ST7920_NCS();
} }
break; break;
@ -184,4 +219,5 @@ class U8GLIB_ST7920_128X64_RRD : public U8GLIB {
#pragma GCC reset_options #pragma GCC reset_options
#endif // U8GLIB_ST7920
#endif // ULCDST7920_H #endif // ULCDST7920_H

@ -403,9 +403,6 @@
#ifndef SDPOWER #ifndef SDPOWER
#define SDPOWER -1 #define SDPOWER -1
#endif #endif
#ifndef SDSS
#define SDSS -1
#endif
#ifndef LED_PIN #ifndef LED_PIN
#define LED_PIN -1 #define LED_PIN -1
#endif #endif

@ -105,7 +105,7 @@
#define TEMP_1_PIN 2 //A2 (T2) - D69 - TEMP_1_PIN #define TEMP_1_PIN 2 //A2 (T2) - D69 - TEMP_1_PIN
#define TEMP_2_PIN 3 //A3 - D63 - J5-3 & AUX-2 #define TEMP_2_PIN 3 //A3 - D63 - J5-3 & AUX-2
#define TEMP_3_PIN 4 //A4 - D37 - BUZZER_PIN #define TEMP_3_PIN 4 //A4 - D37 - BUZZER_PIN
#define TEMP_4_PIN 5 //A5 - D49 - SD_DETECT_PIN //#define TEMP_4_PIN 5 //A5 - D49 - SD_DETECT_PIN
//#define ?? 6 //A6 - D0 - RXD0 - J4-4 & AUX-1 //#define ?? 6 //A6 - D0 - RXD0 - J4-4 & AUX-1
#define FILWIDTH_PIN 7 //A7 - D1 - TXD0 - J4-5 & AUX-1 #define FILWIDTH_PIN 7 //A7 - D1 - TXD0 - J4-5 & AUX-1
@ -288,8 +288,6 @@
#if ENABLED(VIKI2) || ENABLED(miniVIKI) #if ENABLED(VIKI2) || ENABLED(miniVIKI)
// #define LCD_SCREEN_ROT_180 // #define LCD_SCREEN_ROT_180
#define SOFTWARE_SPI // temp to see if it fixes the "not found" error
#undef BEEPER_PIN #undef BEEPER_PIN
#define BEEPER_PIN 37 // may change if cable changes #define BEEPER_PIN 37 // may change if cable changes

@ -0,0 +1,3 @@
#!/usr/bin/env bash
arduino --verify --board teensy:avr:teensy35:usb=serial,speed=120,opt=o1std,keys=en-us Marlin/Marlin.ino

@ -0,0 +1,21 @@
Import("env")
env.AddPostAction(
"$BUILD_DIR/firmware.hex",
env.VerboseAction(" ".join([
"sed", "-i.bak",
"s/:10040000FFFFFFFFFFFFFFFFFFFFFFFFDEF9FFFF23/:10040000FFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFD/",
"$BUILD_DIR/firmware.hex"
]), "Fixing $BUILD_DIR/firmware.hex secure flash flags"))
env.AddPreAction(
"upload",
env.VerboseAction(" ".join([
"echo",
"'h\\nloadfile $BUILD_DIR/firmware.hex\\nr\\nq\\n'",
">$BUILD_DIR/aux.jlink"
]), "Creating auxiliary files"))
env.Replace(
UPLOADHEXCMD=
'JLinkExe -device MK20DX256xxx7 -speed 4000 -if swd -autoconnect 1 -CommanderScript $BUILD_DIR/aux.jlink -SkipProgOnCRCMatch = 1 -VerifyDownload = 1'
)

@ -121,3 +121,31 @@ lib_ldf_mode = off
lib_extra_dirs = frameworks lib_extra_dirs = frameworks
lib_deps = U8glib-ARM, CMSIS-LPC1768 lib_deps = U8glib-ARM, CMSIS-LPC1768
extra_scripts = Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py extra_scripts = Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py
[env:Re-ARM_debug_and_upload]
# Segger JLink
platform = nxplpc
#framework = mbed
board = lpc1768
board_f_cpu = 100000000L
build_flags = !python Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py
lib_ldf_mode = off
lib_deps = U8glib-ARM
src_filter =
extra_scripts = debug_extra_script.py, Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py
debug_tool = custom
debug_server =
C:\Program Files (x86)\SEGGER\JLink_V618d\JLinkGDBServerCL.exe
-select
USB
-port
2331
-device
LPC1768
-if
JTAG
-speed
auto
-noir
Loading…
Cancel
Save