Update planner.cpp

Changed level and leveling to compensation
2.0.x
John Davis 10 years ago
parent 4315c2547a
commit ac204028e7

@ -75,14 +75,14 @@ float max_e_jerk;
float mintravelfeedrate; float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS]; unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_COMPENSATION
// this holds the required transform to compensate for bed level // this holds the required transform to compensate for bed compensation
matrix_3x3 plan_bed_level_matrix = { matrix_3x3 plan_bed_compensation_matrix = {
1.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0,
}; };
#endif // #ifdef ENABLE_AUTO_BED_LEVELING #endif // #ifdef ENABLE_AUTO_BED_COMPENSATION
// The current position of the tool in absolute steps // The current position of the tool in absolute steps
long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
@ -528,11 +528,11 @@ float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_COMPENSATION
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder) void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
#else #else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder) void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
#endif //ENABLE_AUTO_BED_LEVELING #endif //ENABLE_AUTO_BED_COMPENSATION
{ {
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head); int next_buffer_head = next_block_index(block_buffer_head);
@ -546,9 +546,9 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
lcd_update(); lcd_update();
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_COMPENSATION
apply_rotation_xyz(plan_bed_level_matrix, x, y, z); apply_rotation_xyz(plan_bed_compensation_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_COMPENSATION
// The target position of the tool in absolute steps // The target position of the tool in absolute steps
// Calculate target position in absolute steps // Calculate target position in absolute steps
@ -1021,29 +1021,29 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
st_wake_up(); st_wake_up();
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_COMPENSATION
vector_3 plan_get_position() { vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position"); //position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get bed_level"); //plan_bed_compensation_matrix.debug("in plan_get bed_compensation");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_compensation_matrix);
//inverse.debug("in plan_get inverse"); //inverse.debug("in plan_get inverse");
position.apply_rotation(inverse); position.apply_rotation(inverse);
//position.debug("after rotation"); //position.debug("after rotation");
return position; return position;
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_COMPENSATION
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_COMPENSATION
void plan_set_position(float x, float y, float z, const float &e) void plan_set_position(float x, float y, float z, const float &e)
{ {
apply_rotation_xyz(plan_bed_level_matrix, x, y, z); apply_rotation_xyz(plan_bed_compensation_matrix, x, y, z);
#else #else
void plan_set_position(const float &x, const float &y, const float &z, const float &e) void plan_set_position(const float &x, const float &y, const float &z, const float &e)
{ {
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_COMPENSATION
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);

Loading…
Cancel
Save