|
|
|
@ -135,54 +135,44 @@
|
|
|
|
|
float code_value_axis_units(const AxisEnum axis);
|
|
|
|
|
bool code_value_bool();
|
|
|
|
|
bool code_has_value();
|
|
|
|
|
void lcd_init();
|
|
|
|
|
void lcd_setstatuspgm(const char* const message, const uint8_t level);
|
|
|
|
|
void sync_plan_position_e();
|
|
|
|
|
void chirp_at_user();
|
|
|
|
|
|
|
|
|
|
// Private functions
|
|
|
|
|
|
|
|
|
|
void un_retract_filament(float where[XYZE]);
|
|
|
|
|
void retract_filament(float where[XYZE]);
|
|
|
|
|
bool look_for_lines_to_connect();
|
|
|
|
|
bool parse_G26_parameters();
|
|
|
|
|
void move_to(const float&, const float&, const float&, const float&) ;
|
|
|
|
|
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
|
|
|
|
bool turn_on_heaters();
|
|
|
|
|
bool prime_nozzle();
|
|
|
|
|
|
|
|
|
|
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
|
|
|
|
|
float g26_e_axis_feedrate = 0.020,
|
|
|
|
|
random_deviation = 0.0,
|
|
|
|
|
layer_height = LAYER_HEIGHT;
|
|
|
|
|
random_deviation = 0.0;
|
|
|
|
|
|
|
|
|
|
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
|
|
|
|
|
// retracts/recovers won't result in a bad state.
|
|
|
|
|
|
|
|
|
|
float valid_trig_angle(float);
|
|
|
|
|
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
|
|
|
|
|
|
|
|
|
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
|
|
|
|
retraction_multiplier = RETRACTION_MULTIPLIER,
|
|
|
|
|
nozzle = NOZZLE,
|
|
|
|
|
filament_diameter = FILAMENT,
|
|
|
|
|
prime_length = PRIME_LENGTH,
|
|
|
|
|
x_pos, y_pos,
|
|
|
|
|
ooze_amount = OOZE_AMOUNT;
|
|
|
|
|
float unified_bed_leveling::g26_extrusion_multiplier,
|
|
|
|
|
unified_bed_leveling::g26_retraction_multiplier,
|
|
|
|
|
unified_bed_leveling::g26_nozzle,
|
|
|
|
|
unified_bed_leveling::g26_filament_diameter,
|
|
|
|
|
unified_bed_leveling::g26_layer_height,
|
|
|
|
|
unified_bed_leveling::g26_prime_length,
|
|
|
|
|
unified_bed_leveling::g26_x_pos,
|
|
|
|
|
unified_bed_leveling::g26_y_pos,
|
|
|
|
|
unified_bed_leveling::g26_ooze_amount;
|
|
|
|
|
|
|
|
|
|
static int16_t bed_temp = BED_TEMP,
|
|
|
|
|
hotend_temp = HOTEND_TEMP;
|
|
|
|
|
int16_t unified_bed_leveling::g26_bed_temp,
|
|
|
|
|
unified_bed_leveling::g26_hotend_temp;
|
|
|
|
|
|
|
|
|
|
static int8_t prime_flag = 0;
|
|
|
|
|
int8_t unified_bed_leveling::g26_prime_flag;
|
|
|
|
|
|
|
|
|
|
static bool continue_with_closest, keep_heaters_on;
|
|
|
|
|
bool unified_bed_leveling::g26_continue_with_closest,
|
|
|
|
|
unified_bed_leveling::g26_keep_heaters_on;
|
|
|
|
|
|
|
|
|
|
static int16_t g26_repeats;
|
|
|
|
|
int16_t unified_bed_leveling::g26_repeats;
|
|
|
|
|
|
|
|
|
|
void G26_line_to_destination(const float &feed_rate) {
|
|
|
|
|
void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
|
|
|
|
|
const float save_feedrate = feedrate_mm_s;
|
|
|
|
|
feedrate_mm_s = feed_rate; // use specified feed rate
|
|
|
|
|
prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA
|
|
|
|
|
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
|
|
|
|
|
feedrate_mm_s = save_feedrate; // restore global feed rate
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -216,7 +206,7 @@
|
|
|
|
|
* Used to interactively edit UBL's Mesh by placing the
|
|
|
|
|
* nozzle in a problem area and doing a G29 P4 R command.
|
|
|
|
|
*/
|
|
|
|
|
void gcode_G26() {
|
|
|
|
|
void unified_bed_leveling::G26() {
|
|
|
|
|
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
|
|
|
|
|
float tmp, start_angle, end_angle;
|
|
|
|
|
int i, xi, yi;
|
|
|
|
@ -237,7 +227,7 @@
|
|
|
|
|
current_position[E_AXIS] = 0.0;
|
|
|
|
|
sync_plan_position_e();
|
|
|
|
|
|
|
|
|
|
if (prime_flag && prime_nozzle()) goto LEAVE;
|
|
|
|
|
if (g26_prime_flag && prime_nozzle()) goto LEAVE;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Bed is preheated
|
|
|
|
@ -255,11 +245,11 @@
|
|
|
|
|
|
|
|
|
|
// Move nozzle to the specified height for the first layer
|
|
|
|
|
set_destination_to_current();
|
|
|
|
|
destination[Z_AXIS] = layer_height;
|
|
|
|
|
destination[Z_AXIS] = g26_layer_height;
|
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
|
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], g26_ooze_amount);
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
has_control_of_lcd_panel = true;
|
|
|
|
|
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -273,13 +263,13 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
location = continue_with_closest
|
|
|
|
|
location = g26_continue_with_closest
|
|
|
|
|
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
|
|
|
|
|
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
|
|
|
|
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
|
|
|
|
|
|
|
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) {
|
|
|
|
|
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
|
|
|
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
|
const float circle_x = mesh_index_to_xpos(location.x_index),
|
|
|
|
|
circle_y = mesh_index_to_ypos(location.y_index);
|
|
|
|
|
|
|
|
|
|
// If this mesh location is outside the printable_radius, skip it.
|
|
|
|
|
|
|
|
|
@ -288,7 +278,7 @@
|
|
|
|
|
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
|
|
|
|
yi = location.y_index;
|
|
|
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
|
|
|
if (g26_debug_flag) {
|
|
|
|
|
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
|
|
|
|
|
SERIAL_ECHOPAIR(", yi=", yi);
|
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
@ -344,7 +334,7 @@
|
|
|
|
|
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//if (ubl.g26_debug_flag) {
|
|
|
|
|
//if (g26_debug_flag) {
|
|
|
|
|
// char ccc, *cptr, seg_msg[50], seg_num[10];
|
|
|
|
|
// strcpy(seg_msg, " segment: ");
|
|
|
|
|
// strcpy(seg_num, " \n");
|
|
|
|
@ -355,7 +345,7 @@
|
|
|
|
|
// debug_current_and_destination(seg_msg);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
if (look_for_lines_to_connect())
|
|
|
|
@ -374,16 +364,16 @@
|
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
|
|
|
|
|
//debug_current_and_destination(PSTR("done doing Z-Raise."));
|
|
|
|
|
|
|
|
|
|
destination[X_AXIS] = x_pos; // Move back to the starting position
|
|
|
|
|
destination[Y_AXIS] = y_pos;
|
|
|
|
|
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
|
|
|
|
|
destination[Y_AXIS] = g26_y_pos;
|
|
|
|
|
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
|
|
|
|
|
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
|
|
|
|
//debug_current_and_destination(PSTR("done doing X/Y move."));
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
|
|
|
|
has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
|
|
|
|
|
|
|
|
|
if (!keep_heaters_on) {
|
|
|
|
|
if (!g26_keep_heaters_on) {
|
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
|
thermalManager.setTargetBed(0);
|
|
|
|
|
#endif
|
|
|
|
@ -391,14 +381,13 @@
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float valid_trig_angle(float d) {
|
|
|
|
|
while (d > 360.0) d -= 360.0;
|
|
|
|
|
while (d < 0.0) d += 360.0;
|
|
|
|
|
return d;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
|
|
|
|
|
mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
|
|
|
|
|
float closest = 99999.99;
|
|
|
|
|
mesh_index_pair return_val;
|
|
|
|
|
|
|
|
|
@ -407,8 +396,8 @@
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
|
if (!is_bit_set(circle_flags, i, j)) {
|
|
|
|
|
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
|
|
|
|
|
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
|
|
|
|
|
const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
|
|
|
|
|
my = mesh_index_to_ypos(j);
|
|
|
|
|
|
|
|
|
|
// Get the distance to this intersection
|
|
|
|
|
float f = HYPOT(X - mx, Y - my);
|
|
|
|
@ -417,7 +406,7 @@
|
|
|
|
|
// to let us find the closest circle to the start position.
|
|
|
|
|
// But if this is not the case, add a small weighting to the
|
|
|
|
|
// distance calculation to help it choose a better place to continue.
|
|
|
|
|
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
|
|
|
|
|
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
|
|
|
|
|
|
|
|
|
|
// Add in the specified amount of Random Noise to our search
|
|
|
|
|
if (random_deviation > 1.0)
|
|
|
|
@ -436,7 +425,7 @@
|
|
|
|
|
return return_val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool look_for_lines_to_connect() {
|
|
|
|
|
bool unified_bed_leveling::look_for_lines_to_connect() {
|
|
|
|
|
float sx, sy, ex, ey;
|
|
|
|
|
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
@ -454,16 +443,16 @@
|
|
|
|
|
// We found two circles that need a horizontal line to connect them
|
|
|
|
|
// Print it!
|
|
|
|
|
//
|
|
|
|
|
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
|
|
|
|
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
|
|
|
|
sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
|
|
|
|
ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
|
|
|
|
|
|
|
|
|
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
|
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
|
sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
|
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
|
|
|
|
|
|
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
|
|
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
|
|
|
if (g26_debug_flag) {
|
|
|
|
|
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
|
|
|
|
SERIAL_ECHOPAIR(", sy=", sy);
|
|
|
|
|
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
|
|
@ -473,7 +462,7 @@
|
|
|
|
|
//debug_current_and_destination(PSTR("Connecting horizontal line."));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
|
|
|
|
|
}
|
|
|
|
|
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
|
|
|
|
|
}
|
|
|
|
@ -488,16 +477,16 @@
|
|
|
|
|
// We found two circles that need a vertical line to connect them
|
|
|
|
|
// Print it!
|
|
|
|
|
//
|
|
|
|
|
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
|
|
|
|
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
|
|
|
|
sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
|
|
|
|
ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
|
|
|
|
|
|
|
|
|
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
|
sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
|
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
|
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
|
|
|
|
|
|
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
|
|
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
|
|
|
if (g26_debug_flag) {
|
|
|
|
|
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
|
|
|
|
SERIAL_ECHOPAIR(", sy=", sy);
|
|
|
|
|
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
|
|
@ -506,7 +495,7 @@
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
debug_current_and_destination(PSTR("Connecting vertical line."));
|
|
|
|
|
}
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
|
|
|
|
|
}
|
|
|
|
|
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
|
|
|
|
|
}
|
|
|
|
@ -518,7 +507,7 @@
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
|
|
|
|
void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
|
|
|
|
float feed_value;
|
|
|
|
|
static float last_z = -999.99;
|
|
|
|
|
|
|
|
|
@ -540,10 +529,10 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if X or Y is involved in the movement.
|
|
|
|
|
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
|
|
|
|
// Yes: a 'normal' movement. No: a retract() or recover()
|
|
|
|
|
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
|
|
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
|
|
|
|
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
|
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
@ -556,16 +545,16 @@
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void retract_filament(float where[XYZE]) {
|
|
|
|
|
void unified_bed_leveling::retract_filament(float where[XYZE]) {
|
|
|
|
|
if (!g26_retracted) { // Only retract if we are not already retracted!
|
|
|
|
|
g26_retracted = true;
|
|
|
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
|
|
|
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * g26_retraction_multiplier);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void un_retract_filament(float where[XYZE]) {
|
|
|
|
|
void unified_bed_leveling::recover_filament(float where[XYZE]) {
|
|
|
|
|
if (g26_retracted) { // Only un-retract if we are retracted.
|
|
|
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
|
|
|
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * g26_retraction_multiplier);
|
|
|
|
|
g26_retracted = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -585,7 +574,7 @@
|
|
|
|
|
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
|
|
|
|
* cases where the optimization comes into play.
|
|
|
|
|
*/
|
|
|
|
|
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
|
|
|
|
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
|
|
|
|
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
|
|
|
|
dy_s = current_position[Y_AXIS] - sy,
|
|
|
|
|
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
|
|
|
@ -613,9 +602,9 @@
|
|
|
|
|
|
|
|
|
|
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
|
|
|
|
|
|
|
|
|
|
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
|
|
|
|
|
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
|
|
|
|
|
|
|
|
|
|
un_retract_filament(destination);
|
|
|
|
|
recover_filament(destination);
|
|
|
|
|
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -624,33 +613,33 @@
|
|
|
|
|
* parameters it made sense to turn them into static globals and get
|
|
|
|
|
* this code out of sight of the main routine.
|
|
|
|
|
*/
|
|
|
|
|
bool parse_G26_parameters() {
|
|
|
|
|
bool unified_bed_leveling::parse_G26_parameters() {
|
|
|
|
|
|
|
|
|
|
extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
|
|
|
|
retraction_multiplier = RETRACTION_MULTIPLIER;
|
|
|
|
|
nozzle = NOZZLE;
|
|
|
|
|
filament_diameter = FILAMENT;
|
|
|
|
|
layer_height = LAYER_HEIGHT;
|
|
|
|
|
prime_length = PRIME_LENGTH;
|
|
|
|
|
bed_temp = BED_TEMP;
|
|
|
|
|
hotend_temp = HOTEND_TEMP;
|
|
|
|
|
prime_flag = 0;
|
|
|
|
|
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
|
|
|
|
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
|
|
|
|
|
g26_nozzle = NOZZLE;
|
|
|
|
|
g26_filament_diameter = FILAMENT;
|
|
|
|
|
g26_layer_height = LAYER_HEIGHT;
|
|
|
|
|
g26_prime_length = PRIME_LENGTH;
|
|
|
|
|
g26_bed_temp = BED_TEMP;
|
|
|
|
|
g26_hotend_temp = HOTEND_TEMP;
|
|
|
|
|
g26_prime_flag = 0;
|
|
|
|
|
|
|
|
|
|
ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
|
|
|
|
|
keep_heaters_on = code_seen('K') && code_value_bool();
|
|
|
|
|
continue_with_closest = code_seen('C') && code_value_bool();
|
|
|
|
|
g26_ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
|
|
|
|
|
g26_keep_heaters_on = code_seen('K') && code_value_bool();
|
|
|
|
|
g26_continue_with_closest = code_seen('C') && code_value_bool();
|
|
|
|
|
|
|
|
|
|
if (code_seen('B')) {
|
|
|
|
|
bed_temp = code_value_temp_abs();
|
|
|
|
|
if (!WITHIN(bed_temp, 15, 140)) {
|
|
|
|
|
g26_bed_temp = code_value_temp_abs();
|
|
|
|
|
if (!WITHIN(g26_bed_temp, 15, 140)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('L')) {
|
|
|
|
|
layer_height = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(layer_height, 0.0, 2.0)) {
|
|
|
|
|
g26_layer_height = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -658,8 +647,8 @@
|
|
|
|
|
|
|
|
|
|
if (code_seen('Q')) {
|
|
|
|
|
if (code_has_value()) {
|
|
|
|
|
retraction_multiplier = code_value_float();
|
|
|
|
|
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
|
|
|
|
|
g26_retraction_multiplier = code_value_float();
|
|
|
|
|
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -671,8 +660,8 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('S')) {
|
|
|
|
|
nozzle = code_value_float();
|
|
|
|
|
if (!WITHIN(nozzle, 0.1, 1.0)) {
|
|
|
|
|
g26_nozzle = code_value_float();
|
|
|
|
|
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -680,11 +669,11 @@
|
|
|
|
|
|
|
|
|
|
if (code_seen('P')) {
|
|
|
|
|
if (!code_has_value())
|
|
|
|
|
prime_flag = -1;
|
|
|
|
|
g26_prime_flag = -1;
|
|
|
|
|
else {
|
|
|
|
|
prime_flag++;
|
|
|
|
|
prime_length = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(prime_length, 0.0, 25.0)) {
|
|
|
|
|
g26_prime_flag++;
|
|
|
|
|
g26_prime_length = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -692,21 +681,21 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('F')) {
|
|
|
|
|
filament_diameter = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
|
|
|
|
|
g26_filament_diameter = code_value_linear_units();
|
|
|
|
|
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
|
|
|
|
|
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
|
|
|
|
|
// scale up or down the length needed to get the
|
|
|
|
|
// same volume of filament
|
|
|
|
|
|
|
|
|
|
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
|
|
|
|
|
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
|
|
|
|
|
|
|
|
|
|
if (code_seen('H')) {
|
|
|
|
|
hotend_temp = code_value_temp_abs();
|
|
|
|
|
if (!WITHIN(hotend_temp, 165, 280)) {
|
|
|
|
|
g26_hotend_temp = code_value_temp_abs();
|
|
|
|
|
if (!WITHIN(g26_hotend_temp, 165, 280)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -723,9 +712,9 @@
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
|
|
|
|
|
y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
|
|
|
|
|
if (!position_is_reachable_xy(x_pos, y_pos)) {
|
|
|
|
|
g26_x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
|
|
|
|
|
g26_y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
|
|
|
|
|
if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
@ -733,12 +722,12 @@
|
|
|
|
|
/**
|
|
|
|
|
* Wait until all parameters are verified before altering the state!
|
|
|
|
|
*/
|
|
|
|
|
ubl.state.active = !code_seen('D');
|
|
|
|
|
state.active = !code_seen('D');
|
|
|
|
|
|
|
|
|
|
return UBL_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool exit_from_g26() {
|
|
|
|
|
bool unified_bed_leveling::exit_from_g26() {
|
|
|
|
|
lcd_reset_alert_level();
|
|
|
|
|
lcd_setstatuspgm(PSTR("Leaving G26"));
|
|
|
|
|
while (ubl_lcd_clicked()) idle();
|
|
|
|
@ -749,18 +738,18 @@
|
|
|
|
|
* Turn on the bed and nozzle heat and
|
|
|
|
|
* wait for them to get up to temperature.
|
|
|
|
|
*/
|
|
|
|
|
bool turn_on_heaters() {
|
|
|
|
|
bool unified_bed_leveling::turn_on_heaters() {
|
|
|
|
|
millis_t next;
|
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
|
|
|
if (bed_temp > 25) {
|
|
|
|
|
if (g26_bed_temp > 25) {
|
|
|
|
|
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
|
|
|
|
|
lcd_quick_feedback();
|
|
|
|
|
#endif
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
thermalManager.setTargetBed(bed_temp);
|
|
|
|
|
has_control_of_lcd_panel = true;
|
|
|
|
|
thermalManager.setTargetBed(g26_bed_temp);
|
|
|
|
|
next = millis() + 5000UL;
|
|
|
|
|
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
|
|
|
|
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
|
|
|
|
|
if (ubl_lcd_clicked()) return exit_from_g26();
|
|
|
|
|
if (PENDING(millis(), next)) {
|
|
|
|
|
next = millis() + 5000UL;
|
|
|
|
@ -776,8 +765,8 @@
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Start heating the nozzle and wait for it to reach temperature.
|
|
|
|
|
thermalManager.setTargetHotend(hotend_temp, 0);
|
|
|
|
|
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
|
|
|
|
|
thermalManager.setTargetHotend(g26_hotend_temp, 0);
|
|
|
|
|
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
|
|
|
|
|
if (ubl_lcd_clicked()) return exit_from_g26();
|
|
|
|
|
if (PENDING(millis(), next)) {
|
|
|
|
|
next = millis() + 5000UL;
|
|
|
|
@ -798,19 +787,19 @@
|
|
|
|
|
/**
|
|
|
|
|
* Prime the nozzle if needed. Return true on error.
|
|
|
|
|
*/
|
|
|
|
|
bool prime_nozzle() {
|
|
|
|
|
bool unified_bed_leveling::prime_nozzle() {
|
|
|
|
|
float Total_Prime = 0.0;
|
|
|
|
|
|
|
|
|
|
if (prime_flag == -1) { // The user wants to control how much filament gets purged
|
|
|
|
|
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
has_control_of_lcd_panel = true;
|
|
|
|
|
|
|
|
|
|
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
|
|
|
|
|
chirp_at_user();
|
|
|
|
|
|
|
|
|
|
set_destination_to_current();
|
|
|
|
|
|
|
|
|
|
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
|
|
|
|
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
|
|
|
|
|
|
|
|
|
while (!ubl_lcd_clicked()) {
|
|
|
|
|
chirp_at_user();
|
|
|
|
@ -838,7 +827,7 @@
|
|
|
|
|
lcd_quick_feedback();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
|
has_control_of_lcd_panel = false;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
@ -847,7 +836,7 @@
|
|
|
|
|
lcd_quick_feedback();
|
|
|
|
|
#endif
|
|
|
|
|
set_destination_to_current();
|
|
|
|
|
destination[E_AXIS] += prime_length;
|
|
|
|
|
destination[E_AXIS] += g26_prime_length;
|
|
|
|
|
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
set_destination_to_current();
|
|
|
|
|