STM32F1 Flash-based EEPROM fixes (#16118)

2.0.x
randellhodges 5 years ago committed by Scott Lahteine
parent f64649933f
commit 7f8ca85e69

@ -40,53 +40,73 @@
#include <EEPROM.h> #include <EEPROM.h>
// Store settings in the last two pages // Store settings in the last two pages
// Flash pages must be erased before writing, so keep track. #define EEPROM_SIZE (EEPROM_PAGE_SIZE * 2)
bool firstWrite = false; #define ACCESS_FINISHED(TF) do{ FLASH_Lock(); eeprom_dirty = false; return TF; }while(0)
static uint8_t ram_eeprom[EEPROM_SIZE] __attribute__((aligned(4))) = {0};
static bool eeprom_dirty = false;
bool PersistentStore::access_start() { bool PersistentStore::access_start() {
firstWrite = true; const uint32_t* source = reinterpret_cast<const uint32_t*>(EEPROM_PAGE0_BASE);
uint32_t* destination = reinterpret_cast<uint32_t*>(ram_eeprom);
static_assert(0 == EEPROM_SIZE % 4, "EEPROM_SIZE is corrupted. (Must be a multiple of 4.)"); // Ensure copying as uint32_t is safe
constexpr size_t eeprom_size_u32 = EEPROM_SIZE / 4;
for (size_t i = 0; i < eeprom_size_u32; ++i, ++destination, ++source)
*destination = *source;
eeprom_dirty = false;
return true; return true;
} }
bool PersistentStore::access_finish() { bool PersistentStore::access_finish() {
FLASH_Lock();
firstWrite = false; if (eeprom_dirty) {
FLASH_Status status;
// Instead of erasing all (both) pages, maybe in the loop we check what page we are in, and if the
// data has changed in that page. We then erase the first time we "detect" a change. In theory, if
// nothing changed in a page, we wouldn't need to erase/write it.
// Or, instead of checking at this point, turn eeprom_dirty into an array of bool the size of number
// of pages. Inside write_data, we set the flag to true at that time if something in that
// page changes...either way, something to look at later.
FLASH_Unlock();
status = FLASH_ErasePage(EEPROM_PAGE0_BASE);
if (status != FLASH_COMPLETE) ACCESS_FINISHED(true);
status = FLASH_ErasePage(EEPROM_PAGE1_BASE);
if (status != FLASH_COMPLETE) ACCESS_FINISHED(true);
const uint16_t *source = reinterpret_cast<const uint16_t*>(ram_eeprom);
for (size_t i = 0; i < EEPROM_SIZE; i += 2, ++source) {
if (FLASH_ProgramHalfWord(EEPROM_PAGE0_BASE + i, *source) != FLASH_COMPLETE)
ACCESS_FINISHED(false);
}
ACCESS_FINISHED(true);
}
return true; return true;
} }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
FLASH_Status status; for (size_t i = 0; i < size; ++i) ram_eeprom[pos + i] = value[i];
eeprom_dirty = true;
if (firstWrite) {
FLASH_Unlock();
status = FLASH_ErasePage(EEPROM_PAGE0_BASE);
if (status != FLASH_COMPLETE) return true;
status = FLASH_ErasePage(EEPROM_PAGE1_BASE);
if (status != FLASH_COMPLETE) return true;
firstWrite = false;
}
for (size_t i = 0; i < size; i++) {
if (FLASH_ProgramHalfWord(EEPROM_PAGE0_BASE + (pos + i) * 2, value[i]) != FLASH_COMPLETE)
return true;
}
crc16(crc, value, size); crc16(crc, value, size);
pos += size; pos += size;
return false; return false; // return true for any error
} }
bool PersistentStore::read_data(int &pos, uint8_t* value, const size_t size, uint16_t *crc, const bool writing/*=true*/) { bool PersistentStore::read_data(int &pos, uint8_t* value, const size_t size, uint16_t *crc, const bool writing/*=true*/) {
for (size_t i = 0; i < size; i++) { const uint8_t * const buff = writing ? &value[0] : &ram_eeprom[pos];
uint8_t v = *(uint16_t *)(EEPROM_PAGE0_BASE + (pos + i) * 2); if (writing) for (size_t i = 0; i < size; i++) value[i] = ram_eeprom[pos + i];
if (writing) value[i] = v; crc16(crc, buff, size);
crc16(crc, &v, 1);
}
pos += size; pos += size;
return false; return false; // return true for any error
} }
size_t PersistentStore::capacity() { return size_t(E2END + 1); } size_t PersistentStore::capacity() { return EEPROM_SIZE; }
#endif // EEPROM_SETTINGS && EEPROM FLASH #endif // EEPROM_SETTINGS && EEPROM FLASH
#endif // __STM32F1__ #endif // __STM32F1__

Loading…
Cancel
Save