diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 3d097235ef..42269b75b6 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -114,6 +114,7 @@ void serial_echopair_P(const char* s_P, long v); void serial_echopair_P(const char* s_P, float v); void serial_echopair_P(const char* s_P, double v); void serial_echopair_P(const char* s_P, unsigned long v); +FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); } diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 233a28cd53..a8bc7b8e6e 100644 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -191,8 +191,10 @@ void Config_Postprocess() { #if ENABLED(EEPROM_SETTINGS) #define DUMMY_PID_VALUE 3000.0f - #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) - #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) + #define EEPROM_START() int eeprom_index = EEPROM_OFFSET + #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) + #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) + #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) /** * M500 - Store Configuration @@ -200,26 +202,27 @@ void Config_Postprocess() { void Config_StoreSettings() { float dummy = 0.0f; char ver[4] = "000"; - int i = EEPROM_OFFSET; - EEPROM_WRITE_VAR(i, ver); // invalidate data first - i += sizeof(eeprom_checksum); // Skip the checksum slot + EEPROM_START(); + + EEPROM_WRITE(ver); // invalidate data first + EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot eeprom_checksum = 0; // clear before first "real data" - EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm); - EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s); - EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2); - EEPROM_WRITE_VAR(i, planner.acceleration); - EEPROM_WRITE_VAR(i, planner.retract_acceleration); - EEPROM_WRITE_VAR(i, planner.travel_acceleration); - EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s); - EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s); - EEPROM_WRITE_VAR(i, planner.min_segment_time); - EEPROM_WRITE_VAR(i, planner.max_xy_jerk); - EEPROM_WRITE_VAR(i, planner.max_z_jerk); - EEPROM_WRITE_VAR(i, planner.max_e_jerk); - EEPROM_WRITE_VAR(i, home_offset); + EEPROM_WRITE(planner.axis_steps_per_mm); + EEPROM_WRITE(planner.max_feedrate_mm_s); + EEPROM_WRITE(planner.max_acceleration_mm_per_s2); + EEPROM_WRITE(planner.acceleration); + EEPROM_WRITE(planner.retract_acceleration); + EEPROM_WRITE(planner.travel_acceleration); + EEPROM_WRITE(planner.min_feedrate_mm_s); + EEPROM_WRITE(planner.min_travel_feedrate_mm_s); + EEPROM_WRITE(planner.min_segment_time); + EEPROM_WRITE(planner.max_xy_jerk); + EEPROM_WRITE(planner.max_z_jerk); + EEPROM_WRITE(planner.max_e_jerk); + EEPROM_WRITE(home_offset); #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected @@ -227,45 +230,45 @@ void Config_StoreSettings() { uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS, dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT); - EEPROM_WRITE_VAR(i, dummy_uint8); - EEPROM_WRITE_VAR(i, mbl.z_offset); - EEPROM_WRITE_VAR(i, mesh_num_x); - EEPROM_WRITE_VAR(i, mesh_num_y); - EEPROM_WRITE_VAR(i, mbl.z_values); + EEPROM_WRITE(dummy_uint8); + EEPROM_WRITE(mbl.z_offset); + EEPROM_WRITE(mesh_num_x); + EEPROM_WRITE(mesh_num_y); + EEPROM_WRITE(mbl.z_values); #else // For disabled MBL write a default mesh uint8_t mesh_num_x = 3, mesh_num_y = 3, dummy_uint8 = 0; dummy = 0.0f; - EEPROM_WRITE_VAR(i, dummy_uint8); - EEPROM_WRITE_VAR(i, dummy); - EEPROM_WRITE_VAR(i, mesh_num_x); - EEPROM_WRITE_VAR(i, mesh_num_y); - for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy_uint8); + EEPROM_WRITE(dummy); + EEPROM_WRITE(mesh_num_x); + EEPROM_WRITE(mesh_num_y); + for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy); #endif // MESH_BED_LEVELING #if !HAS_BED_PROBE float zprobe_zoffset = 0; #endif - EEPROM_WRITE_VAR(i, zprobe_zoffset); + EEPROM_WRITE(zprobe_zoffset); // 9 floats for DELTA / Z_DUAL_ENDSTOPS #if ENABLED(DELTA) - EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats - EEPROM_WRITE_VAR(i, delta_radius); // 1 float - EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float - EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float - EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float - EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float - EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float + EEPROM_WRITE(endstop_adj); // 3 floats + EEPROM_WRITE(delta_radius); // 1 float + EEPROM_WRITE(delta_diagonal_rod); // 1 float + EEPROM_WRITE(delta_segments_per_second); // 1 float + EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float + EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float + EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float #elif ENABLED(Z_DUAL_ENDSTOPS) - EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float + EEPROM_WRITE(z_endstop_adj); // 1 float dummy = 0.0f; - for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy); + for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy); #else dummy = 0.0f; - for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy); + for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif #if DISABLED(ULTIPANEL) @@ -273,34 +276,34 @@ void Config_StoreSettings() { preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED; #endif // !ULTIPANEL - EEPROM_WRITE_VAR(i, preheatHotendTemp1); - EEPROM_WRITE_VAR(i, preheatBedTemp1); - EEPROM_WRITE_VAR(i, preheatFanSpeed1); - EEPROM_WRITE_VAR(i, preheatHotendTemp2); - EEPROM_WRITE_VAR(i, preheatBedTemp2); - EEPROM_WRITE_VAR(i, preheatFanSpeed2); + EEPROM_WRITE(preheatHotendTemp1); + EEPROM_WRITE(preheatBedTemp1); + EEPROM_WRITE(preheatFanSpeed1); + EEPROM_WRITE(preheatHotendTemp2); + EEPROM_WRITE(preheatBedTemp2); + EEPROM_WRITE(preheatFanSpeed2); for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { #if ENABLED(PIDTEMP) if (e < HOTENDS) { - EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e)); - EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e)); - EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e)); + EEPROM_WRITE(PID_PARAM(Kp, e)); + EEPROM_WRITE(PID_PARAM(Ki, e)); + EEPROM_WRITE(PID_PARAM(Kd, e)); #if ENABLED(PID_ADD_EXTRUSION_RATE) - EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e)); + EEPROM_WRITE(PID_PARAM(Kc, e)); #else dummy = 1.0f; // 1.0 = default kc - EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy); #endif } else #endif // !PIDTEMP { dummy = DUMMY_PID_VALUE; // When read, will not change the existing value - EEPROM_WRITE_VAR(i, dummy); // Kp + EEPROM_WRITE(dummy); // Kp dummy = 0.0f; - for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc + for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc } } // Hotends Loop @@ -308,67 +311,68 @@ void Config_StoreSettings() { #if DISABLED(PID_ADD_EXTRUSION_RATE) int lpq_len = 20; #endif - EEPROM_WRITE_VAR(i, lpq_len); + EEPROM_WRITE(lpq_len); #if DISABLED(PIDTEMPBED) dummy = DUMMY_PID_VALUE; - for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); + for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #else - EEPROM_WRITE_VAR(i, thermalManager.bedKp); - EEPROM_WRITE_VAR(i, thermalManager.bedKi); - EEPROM_WRITE_VAR(i, thermalManager.bedKd); + EEPROM_WRITE(thermalManager.bedKp); + EEPROM_WRITE(thermalManager.bedKi); + EEPROM_WRITE(thermalManager.bedKd); #endif #if !HAS_LCD_CONTRAST const int lcd_contrast = 32; #endif - EEPROM_WRITE_VAR(i, lcd_contrast); + EEPROM_WRITE(lcd_contrast); #if ENABLED(SCARA) - EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats + EEPROM_WRITE(axis_scaling); // 3 floats #else dummy = 1.0f; - EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy); #endif #if ENABLED(FWRETRACT) - EEPROM_WRITE_VAR(i, autoretract_enabled); - EEPROM_WRITE_VAR(i, retract_length); + EEPROM_WRITE(autoretract_enabled); + EEPROM_WRITE(retract_length); #if EXTRUDERS > 1 - EEPROM_WRITE_VAR(i, retract_length_swap); + EEPROM_WRITE(retract_length_swap); #else dummy = 0.0f; - EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy); #endif - EEPROM_WRITE_VAR(i, retract_feedrate_mm_s); - EEPROM_WRITE_VAR(i, retract_zlift); - EEPROM_WRITE_VAR(i, retract_recover_length); + EEPROM_WRITE(retract_feedrate_mm_s); + EEPROM_WRITE(retract_zlift); + EEPROM_WRITE(retract_recover_length); #if EXTRUDERS > 1 - EEPROM_WRITE_VAR(i, retract_recover_length_swap); + EEPROM_WRITE(retract_recover_length_swap); #else dummy = 0.0f; - EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy); #endif - EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s); + EEPROM_WRITE(retract_recover_feedrate_mm_s); #endif // FWRETRACT - EEPROM_WRITE_VAR(i, volumetric_enabled); + EEPROM_WRITE(volumetric_enabled); // Save filament sizes for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { if (q < COUNT(filament_size)) dummy = filament_size[q]; - EEPROM_WRITE_VAR(i, dummy); + EEPROM_WRITE(dummy); } - uint16_t final_checksum = eeprom_checksum; + uint16_t final_checksum = eeprom_checksum, + eeprom_size = eeprom_index; - int j = EEPROM_OFFSET; - EEPROM_WRITE_VAR(j, version); - EEPROM_WRITE_VAR(j, final_checksum); + eeprom_index = EEPROM_OFFSET; + EEPROM_WRITE(version); + EEPROM_WRITE(final_checksum); // Report storage size SERIAL_ECHO_START; - SERIAL_ECHOPAIR("Settings Stored (", i); + SERIAL_ECHOPAIR("Settings Stored (", eeprom_size); SERIAL_ECHOLNPGM(" bytes)"); } @@ -376,11 +380,15 @@ void Config_StoreSettings() { * M501 - Retrieve Configuration */ void Config_RetrieveSettings() { - int i = EEPROM_OFFSET; + + EEPROM_START(); + char stored_ver[4]; + EEPROM_READ(stored_ver); + uint16_t stored_checksum; - EEPROM_READ_VAR(i, stored_ver); - EEPROM_READ_VAR(i, stored_checksum); + EEPROM_READ(stored_checksum); + // SERIAL_ECHOPAIR("Version: [", ver); // SERIAL_ECHOPAIR("] Stored version: [", stored_ver); // SERIAL_ECHOLNPGM("]"); @@ -394,63 +402,63 @@ void Config_RetrieveSettings() { eeprom_checksum = 0; // clear before reading first "real data" // version number match - EEPROM_READ_VAR(i, planner.axis_steps_per_mm); - EEPROM_READ_VAR(i, planner.max_feedrate_mm_s); - EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2); + EEPROM_READ(planner.axis_steps_per_mm); + EEPROM_READ(planner.max_feedrate_mm_s); + EEPROM_READ(planner.max_acceleration_mm_per_s2); - EEPROM_READ_VAR(i, planner.acceleration); - EEPROM_READ_VAR(i, planner.retract_acceleration); - EEPROM_READ_VAR(i, planner.travel_acceleration); - EEPROM_READ_VAR(i, planner.min_feedrate_mm_s); - EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s); - EEPROM_READ_VAR(i, planner.min_segment_time); - EEPROM_READ_VAR(i, planner.max_xy_jerk); - EEPROM_READ_VAR(i, planner.max_z_jerk); - EEPROM_READ_VAR(i, planner.max_e_jerk); - EEPROM_READ_VAR(i, home_offset); + EEPROM_READ(planner.acceleration); + EEPROM_READ(planner.retract_acceleration); + EEPROM_READ(planner.travel_acceleration); + EEPROM_READ(planner.min_feedrate_mm_s); + EEPROM_READ(planner.min_travel_feedrate_mm_s); + EEPROM_READ(planner.min_segment_time); + EEPROM_READ(planner.max_xy_jerk); + EEPROM_READ(planner.max_z_jerk); + EEPROM_READ(planner.max_e_jerk); + EEPROM_READ(home_offset); uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0; - EEPROM_READ_VAR(i, dummy_uint8); - EEPROM_READ_VAR(i, dummy); - EEPROM_READ_VAR(i, mesh_num_x); - EEPROM_READ_VAR(i, mesh_num_y); + EEPROM_READ(dummy_uint8); + EEPROM_READ(dummy); + EEPROM_READ(mesh_num_x); + EEPROM_READ(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) mbl.status = dummy_uint8; mbl.z_offset = dummy; if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { // EEPROM data fits the current mesh - EEPROM_READ_VAR(i, mbl.z_values); + EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale mbl.reset(); - for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); + for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); } #else // MBL is disabled - skip the stored data - for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); + for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); #endif // MESH_BED_LEVELING #if !HAS_BED_PROBE float zprobe_zoffset = 0; #endif - EEPROM_READ_VAR(i, zprobe_zoffset); + EEPROM_READ(zprobe_zoffset); #if ENABLED(DELTA) - EEPROM_READ_VAR(i, endstop_adj); // 3 floats - EEPROM_READ_VAR(i, delta_radius); // 1 float - EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float - EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float - EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float - EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float - EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float + EEPROM_READ(endstop_adj); // 3 floats + EEPROM_READ(delta_radius); // 1 float + EEPROM_READ(delta_diagonal_rod); // 1 float + EEPROM_READ(delta_segments_per_second); // 1 float + EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float + EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float + EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float #elif ENABLED(Z_DUAL_ENDSTOPS) - EEPROM_READ_VAR(i, z_endstop_adj); + EEPROM_READ(z_endstop_adj); dummy = 0.0f; - for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy); + for (uint8_t q=8; q--;) EEPROM_READ(dummy); #else dummy = 0.0f; - for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy); + for (uint8_t q=9; q--;) EEPROM_READ(dummy); #endif #if DISABLED(ULTIPANEL) @@ -458,86 +466,86 @@ void Config_RetrieveSettings() { preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2; #endif - EEPROM_READ_VAR(i, preheatHotendTemp1); - EEPROM_READ_VAR(i, preheatBedTemp1); - EEPROM_READ_VAR(i, preheatFanSpeed1); - EEPROM_READ_VAR(i, preheatHotendTemp2); - EEPROM_READ_VAR(i, preheatBedTemp2); - EEPROM_READ_VAR(i, preheatFanSpeed2); + EEPROM_READ(preheatHotendTemp1); + EEPROM_READ(preheatBedTemp1); + EEPROM_READ(preheatFanSpeed1); + EEPROM_READ(preheatHotendTemp2); + EEPROM_READ(preheatBedTemp2); + EEPROM_READ(preheatFanSpeed2); #if ENABLED(PIDTEMP) for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { - EEPROM_READ_VAR(i, dummy); // Kp + EEPROM_READ(dummy); // Kp if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { // do not need to scale PID values as the values in EEPROM are already scaled PID_PARAM(Kp, e) = dummy; - EEPROM_READ_VAR(i, PID_PARAM(Ki, e)); - EEPROM_READ_VAR(i, PID_PARAM(Kd, e)); + EEPROM_READ(PID_PARAM(Ki, e)); + EEPROM_READ(PID_PARAM(Kd, e)); #if ENABLED(PID_ADD_EXTRUSION_RATE) - EEPROM_READ_VAR(i, PID_PARAM(Kc, e)); + EEPROM_READ(PID_PARAM(Kc, e)); #else - EEPROM_READ_VAR(i, dummy); + EEPROM_READ(dummy); #endif } else { - for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc + for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc } } #else // !PIDTEMP // 4 x 4 = 16 slots for PID parameters - for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc + for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc #endif // !PIDTEMP #if DISABLED(PID_ADD_EXTRUSION_RATE) int lpq_len; #endif - EEPROM_READ_VAR(i, lpq_len); + EEPROM_READ(lpq_len); #if ENABLED(PIDTEMPBED) - EEPROM_READ_VAR(i, dummy); // bedKp + EEPROM_READ(dummy); // bedKp if (dummy != DUMMY_PID_VALUE) { thermalManager.bedKp = dummy; - EEPROM_READ_VAR(i, thermalManager.bedKi); - EEPROM_READ_VAR(i, thermalManager.bedKd); + EEPROM_READ(thermalManager.bedKi); + EEPROM_READ(thermalManager.bedKd); } #else - for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd + for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd #endif #if !HAS_LCD_CONTRAST int lcd_contrast; #endif - EEPROM_READ_VAR(i, lcd_contrast); + EEPROM_READ(lcd_contrast); #if ENABLED(SCARA) - EEPROM_READ_VAR(i, axis_scaling); // 3 floats + EEPROM_READ(axis_scaling); // 3 floats #else - EEPROM_READ_VAR(i, dummy); + EEPROM_READ(dummy); #endif #if ENABLED(FWRETRACT) - EEPROM_READ_VAR(i, autoretract_enabled); - EEPROM_READ_VAR(i, retract_length); + EEPROM_READ(autoretract_enabled); + EEPROM_READ(retract_length); #if EXTRUDERS > 1 - EEPROM_READ_VAR(i, retract_length_swap); + EEPROM_READ(retract_length_swap); #else - EEPROM_READ_VAR(i, dummy); + EEPROM_READ(dummy); #endif - EEPROM_READ_VAR(i, retract_feedrate_mm_s); - EEPROM_READ_VAR(i, retract_zlift); - EEPROM_READ_VAR(i, retract_recover_length); + EEPROM_READ(retract_feedrate_mm_s); + EEPROM_READ(retract_zlift); + EEPROM_READ(retract_recover_length); #if EXTRUDERS > 1 - EEPROM_READ_VAR(i, retract_recover_length_swap); + EEPROM_READ(retract_recover_length_swap); #else - EEPROM_READ_VAR(i, dummy); + EEPROM_READ(dummy); #endif - EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s); + EEPROM_READ(retract_recover_feedrate_mm_s); #endif // FWRETRACT - EEPROM_READ_VAR(i, volumetric_enabled); + EEPROM_READ(volumetric_enabled); for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { - EEPROM_READ_VAR(i, dummy); + EEPROM_READ(dummy); if (q < COUNT(filament_size)) filament_size[q] = dummy; } @@ -545,7 +553,7 @@ void Config_RetrieveSettings() { Config_Postprocess(); SERIAL_ECHO_START; SERIAL_ECHO(version); - SERIAL_ECHOPAIR(" stored settings retrieved (", i); + SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index); SERIAL_ECHOLNPGM(" bytes)"); } else {