Move NONLINEAR bed leveling to planner

This is in advance of moving non-linear bed leveling to the planner
class.
2.0.x
Scott Lahteine 8 years ago
parent 9429c7db89
commit 77639672d7

@ -675,7 +675,7 @@
#endif #endif
#endif #endif
#define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_LINEAR)) #define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE))
/** /**
* Buzzer/Speaker * Buzzer/Speaker

@ -321,7 +321,7 @@ float code_value_temp_diff();
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
extern int nonlinear_grid_spacing[2]; extern int nonlinear_grid_spacing[2];
void adjust_delta(float cartesian[XYZ]); float nonlinear_z_offset(float logical[XYZ]);
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)

@ -400,7 +400,6 @@ static uint8_t target_extruder;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED) #elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
@ -3434,8 +3433,6 @@ inline void gcode_G28() {
// Deploy the probe. Probe will raise if needed. // Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) return; if (DEPLOY_PROBE()) return;
bed_leveling_in_progress = true;
float xProbe, yProbe, measured_z = 0; float xProbe, yProbe, measured_z = 0;
#if ENABLED(AUTO_BED_LEVELING_GRID) #if ENABLED(AUTO_BED_LEVELING_GRID)
@ -3576,6 +3573,8 @@ inline void gcode_G28() {
#elif ENABLED(AUTO_BED_LEVELING_LINEAR) #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
// solve lsq problem // solve lsq problem
double plane_equation_coefficients[3]; double plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
@ -3669,6 +3668,8 @@ inline void gcode_G28() {
} }
} //do_topography_map } //do_topography_map
// For LINEAR and 3POINT leveling correct the current position
if (verbose_level > 0) if (verbose_level > 0)
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
@ -3738,8 +3739,6 @@ inline void gcode_G28() {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
#endif #endif
bed_leveling_in_progress = false;
report_current_position(); report_current_position();
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -7638,6 +7637,48 @@ void ok_to_send() {
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
// Get the Z adjustment for non-linear bed leveling
float nonlinear_z_offset(float cartesian[XYZ]) {
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
float hx2 = half_x - 0.001, hx1 = -hx2,
hy2 = half_y - 0.001, hy1 = -hy2,
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4;
/*
SERIAL_ECHOPAIR("grid_x=", grid_x);
SERIAL_ECHOPAIR(" grid_y=", grid_y);
SERIAL_ECHOPAIR(" floor_x=", floor_x);
SERIAL_ECHOPAIR(" floor_y=", floor_y);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" left=", left);
SERIAL_ECHOPAIR(" right=", right);
SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
//*/
return (1 - ratio_x) * left + ratio_x * right;
}
#endif // AUTO_BED_LEVELING_NONLINEAR
#if ENABLED(DELTA) #if ENABLED(DELTA)
/** /**
@ -7828,50 +7869,6 @@ void ok_to_send() {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
} }
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[XYZ]) {
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
float hx2 = half_x - 0.001, hx1 = -hx2,
hy2 = half_y - 0.001, hy1 = -hy2,
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/**
SERIAL_ECHOPAIR("grid_x=", grid_x);
SERIAL_ECHOPAIR(" grid_y=", grid_y);
SERIAL_ECHOPAIR(" floor_x=", floor_x);
SERIAL_ECHOPAIR(" floor_y=", floor_y);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" left=", left);
SERIAL_ECHOPAIR(" right=", right);
SERIAL_ECHOLNPAIR(" offset=", offset);
*/
}
#endif // AUTO_BED_LEVELING_NONLINEAR
#endif // DELTA #endif // DELTA
/** /**
@ -8018,10 +8015,6 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
inverse_kinematics(logical); inverse_kinematics(logical);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
if (!bed_leveling_in_progress) adjust_delta(logical);
#endif
//DEBUG_POS("prepare_kinematic_move_to", logical); //DEBUG_POS("prepare_kinematic_move_to", logical);
//DEBUG_POS("prepare_kinematic_move_to", delta); //DEBUG_POS("prepare_kinematic_move_to", delta);
@ -8272,9 +8265,6 @@ void prepare_move_to_destination() {
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(arc_target); inverse_kinematics(arc_target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
adjust_delta(arc_target);
#endif
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
@ -8284,9 +8274,6 @@ void prepare_move_to_destination() {
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(logical); inverse_kinematics(logical);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
adjust_delta(logical);
#endif
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);

@ -541,6 +541,23 @@ void Planner::check_axes_activity() {
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
lz = LOGICAL_Z_POSITION(dz); lz = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
float tmp[XYZ] = { lx, ly, 0 };
#if ENABLED(DELTA)
float offset = nonlinear_z_offset(tmp);
lx += offset;
ly += offset;
lz += offset;
#else
lz += nonlinear_z_offset(tmp);
#endif
#endif #endif
} }
@ -562,6 +579,11 @@ void Planner::check_axes_activity() {
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
lz = LOGICAL_Z_POSITION(dz); lz = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
float tmp[XYZ] = { lx, ly, 0 };
lz -= nonlinear_z_offset(tmp);
#endif #endif
} }

@ -190,10 +190,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(bez_target); inverse_kinematics(bez_target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
adjust_delta(bez_target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#else #else
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#endif #endif

Loading…
Cancel
Save