Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into ErikZalm

Conflicts:
	Marlin/Configuration.h
	Marlin/Marlin_main.cpp
2.0.x
fsantini 11 years ago
commit 6ae7f7870d

@ -61,3 +61,25 @@ atmega1284.build.f_cpu=16000000L
atmega1284.build.core=arduino
atmega1284.build.variant=standard
#
##############################################################
atmega1284.name=Sanguino W/ ATmega1284p 16mhz ceramic resonator
atmega1284.upload.protocol=stk500
atmega1284.upload.maximum_size=131072
atmega1284.upload.speed=57600
atmega1284.bootloader.low_fuses=0xD6
atmega1284.bootloader.high_fuses=0xDC
atmega1284.bootloader.extended_fuses=0xFD
atmega1284.bootloader.path=atmega
atmega1284.bootloader.file=ATmegaBOOT_168_atmega1284p.hex
atmega1284.bootloader.unlock_bits=0x3F
atmega1284.bootloader.lock_bits=0x0F
atmega1284.build.mcu=atmega1284p
atmega1284.build.f_cpu=16000000L
atmega1284.build.core=arduino
atmega1284.build.variant=standard
#

@ -8,9 +8,9 @@
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer rplace the configuration files wilth the files in the
// For a Delta printer rplace the configuration files wilth the files in the
// example_configurations/delta directory.
//
//
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
@ -36,7 +36,8 @@
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 20 = Sethi 3D_1
// 2 = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
@ -335,9 +336,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
@ -346,26 +347,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif
// with accurate bed leveling, the bed is sampled in a ACCURATE_BED_LEVELING_POINTSxACCURATE_BED_LEVELING_POINTS grid and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#define ACCURATE_BED_LEVELING
@ -443,6 +444,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse
@ -549,7 +551,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister

@ -161,7 +161,7 @@
#define EXTRUDERS 1
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS
#if defined (Z_DUAL_STEPPER_DRIVERS) && defined (Y_DUAL_STEPPER_DRIVERS)
#error "You cannot have dual drivers for both Y and Z"
#endif

@ -50,7 +50,7 @@
#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#include "Wire.h"
#endif
#if NUM_SERVOS > 0
@ -99,7 +99,7 @@
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
@ -229,7 +229,11 @@ int EtoPPressure=0;
#endif
#ifdef ULTIPANEL
bool powersupply = true;
#ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
#endif
#ifdef DELTA
@ -418,7 +422,7 @@ void servo_init()
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
@ -639,17 +643,17 @@ void get_command()
if(!card.sdprinting || serial_count!=0){
return;
}
//'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
// if it occures, stop_buffering is triggered and the buffer is ran dry.
// if it occures, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
static bool stop_buffering=false;
if(buflen==0) stop_buffering=false;
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
int16_t n=card.get();
serial_char = (char)n;
serial_char = (char)n;
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == '#' && comment_mode == false) ||
@ -674,7 +678,7 @@ void get_command()
}
if(serial_char=='#')
stop_buffering=true;
if(!serial_count)
{
comment_mode = false; //for new command
@ -746,13 +750,13 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#endif
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
#endif
#endif
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
@ -770,12 +774,12 @@ static int x_home_dir(int extruder) {
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE
#endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
@ -788,8 +792,8 @@ static void axis_is_at_home(int axis) {
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
@ -881,7 +885,7 @@ static void run_z_probe() {
st_synchronize();
// move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4;
feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
@ -978,7 +982,7 @@ static void homeaxis(int axis) {
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
@ -1036,7 +1040,7 @@ static void homeaxis(int axis) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
if (axis==Z_AXIS) retract_z_probe();
#endif
}
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
@ -1110,7 +1114,7 @@ void process_commands()
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
current_position[Z_AXIS]+=retract_zlift;
destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
feedrate=retract_recover_feedrate;
retracted=false;
prepare_move();
@ -1224,10 +1228,10 @@ void process_commands()
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
#endif
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
@ -1246,7 +1250,7 @@ void process_commands()
current_position[Y_AXIS]=code_value()+add_homeing[1];
}
}
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
@ -1258,14 +1262,14 @@ void process_commands()
#endif
HOMEAXIS(Z);
}
#else // Z Safe mode activated.
#else // Z Safe mode activated.
if(home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
@ -1283,7 +1287,7 @@ void process_commands()
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
@ -1303,8 +1307,8 @@ void process_commands()
#endif
#endif
if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homeing[2];
@ -1467,7 +1471,7 @@ void process_commands()
run_z_probe();
float z_at_xLeft_yFront = current_position[Z_AXIS];
retract_z_probe();
SERIAL_PROTOCOLPGM("Bed x: ");
SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
SERIAL_PROTOCOLPGM(" y: ");
@ -1485,7 +1489,7 @@ void process_commands()
run_z_probe();
float z_at_xRight_yFront = current_position[Z_AXIS];
retract_z_probe(); // Retract Z Servo endstop if available
SERIAL_PROTOCOLPGM("Bed x: ");
SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
SERIAL_PROTOCOLPGM(" y: ");
@ -1500,10 +1504,10 @@ void process_commands()
#endif // ACCURATE_BED_LEVELING
st_synchronize();
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
@ -1515,11 +1519,11 @@ void process_commands()
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
break;
case 30: // G30 Single Z Probe
{
engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
@ -1670,14 +1674,14 @@ void process_commands()
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
@ -1685,16 +1689,16 @@ void process_commands()
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL)
*(starpos-1)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
@ -1767,7 +1771,7 @@ void process_commands()
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
#endif
setWatch();
break;
case 140: // M140 set bed temp
@ -1823,7 +1827,7 @@ void process_commands()
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
}
#endif
SERIAL_PROTOCOLLN("");
return;
break;
@ -1841,14 +1845,14 @@ void process_commands()
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
#endif
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
#endif
CooldownNoWait = false;
}
#ifdef AUTOTEMP
@ -2012,7 +2016,7 @@ void process_commands()
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG);
@ -2169,18 +2173,18 @@ void process_commands()
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
SendColors(red,grn,blu);
}
break;
#endif //BLINKM
@ -2302,7 +2306,7 @@ void process_commands()
{
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
}
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
@ -2335,17 +2339,17 @@ void process_commands()
}
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){
for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
{
if (sensitive_pins[i] == pin_number)
@ -2354,28 +2358,28 @@ void process_commands()
break;
}
}
if (pin_number > -1)
{
st_synchronize();
pinMode(pin_number, INPUT);
int target;
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target){
manage_heater();
manage_inactivity();
@ -2385,7 +2389,7 @@ void process_commands()
}
}
}
break;
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
@ -2561,13 +2565,13 @@ void process_commands()
engage_z_probe(); // Engage Z Servo endstop if available
}
break;
case 402:
{
retract_z_probe(); // Retract Z Servo endstop if enabled
}
break;
#endif
#endif
case 500: // M500 Store settings in EEPROM
{
Config_StoreSettings();
@ -2725,14 +2729,14 @@ void process_commands()
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// millimeters x-offset and an optional differential hotend temperature of
// millimeters x-offset and an optional differential hotend temperature of
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
//
// Note: the X axis should be homed after changing dual x-carriage mode.
{
st_synchronize();
if (code_seen('S'))
dual_x_carriage_mode = code_value();
@ -2743,7 +2747,7 @@ void process_commands()
if (code_seen('R'))
duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" ");
@ -2759,13 +2763,13 @@ void process_commands()
{
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
break;
#endif //DUAL_X_CARRIAGE
#endif //DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
@ -2846,19 +2850,19 @@ void process_commands()
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
{
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
@ -2866,7 +2870,7 @@ void process_commands()
current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
@ -2874,18 +2878,18 @@ void process_commands()
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
{
current_position[X_AXIS] = inactive_extruder_x_pos;
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
extruder_duplication_enabled = false;
}
else
{
@ -2895,7 +2899,7 @@ void process_commands()
active_extruder_parked = true;
delayed_move_time = 0;
}
#else
#else
// Offset extruder (only by XY)
int i;
for(i = 0; i < 2; i++) {
@ -3108,13 +3112,13 @@ void prepare_move()
{
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{
if (current_position[E_AXIS] == destination[E_AXIS])
@ -3123,7 +3127,7 @@ void prepare_move()
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL)
{
memcpy(current_position, destination, sizeof(current_position));
memcpy(current_position, destination, sizeof(current_position));
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
@ -3133,9 +3137,9 @@ void prepare_move()
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
@ -3301,7 +3305,7 @@ void manage_inactivity()
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination,current_position,sizeof(destination));
prepare_move();
prepare_move();
}
#endif
#ifdef TEMP_STAT_LEDS

@ -5,6 +5,13 @@
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer rplace the configuration files wilth the files in the
// example_configurations/delta directory.
//
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
@ -18,13 +25,18 @@
// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200
// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED // Enable BT interface on AT90USB devices
//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 2 = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
@ -38,6 +50,7 @@
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller
@ -45,6 +58,7 @@
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 83 = SAV Mk-I (AT90USB1286)
// 9 = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
@ -61,6 +75,10 @@
// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
#define EXTRUDERS 1
@ -70,6 +88,8 @@
#define POWER_SUPPLY 1
// Define this to have the electronics keep the powersupply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================== Delta Settings =============================
@ -125,9 +145,10 @@
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan) (4.7k pullup)
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
@ -137,7 +158,7 @@
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1
@ -282,16 +303,15 @@
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
// deltas never have min endstops
const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
// Deltas never have min endstops
#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
@ -338,6 +358,58 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//============================= Bed Auto Leveling ===========================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
#ifdef ENABLE_AUTO_BED_LEVELING
// these are the positions on the bed to do the probing
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
// these are the offsets to the prob relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif
#endif
// The position of the homing switches
//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
@ -406,7 +478,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse
@ -510,6 +583,17 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define ULTIPANEL
#endif
// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
//#define NEWPANEL
#endif
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
@ -543,6 +627,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Temperature status leds that display the hotend and bet temperature.
// If alle hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
@ -564,6 +653,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas

@ -40,6 +40,10 @@
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT
@ -146,6 +150,21 @@
#define EXTRUDERS 1
#endif
// Same again but for Y Axis.
//#define Y_DUAL_STEPPER_DRIVERS
// Define if the two Y drives need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#ifdef Y_DUAL_STEPPER_DRIVERS
#undef EXTRUDERS
#define EXTRUDERS 1
#endif
#if defined (Z_DUAL_STEPPER_DRIVERS) && defined (Y_DUAL_STEPPER_DRIVERS)
#error "You cannot have dual drivers for both Y and Z"
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
@ -155,8 +174,8 @@
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
@ -169,14 +188,35 @@
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
#endif // DUAL_X_CARRIAGE
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// As the x-carriages are independent we can now account for any relative Z offset
#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5
#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
#define AXIS_RELATIVE_MODES {false, false, false, false}
@ -238,6 +278,11 @@
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the filesystem block order.
// if a file is deleted, it frees a block. hence, the order is not purely cronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
// The hardware watchdog should reset the Microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
//#define USE_WATCHDOG
@ -251,6 +296,26 @@
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in realtime
// does not respect endstops!
//#define BABYSTEPPING
#ifdef BABYSTEPPING
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#ifdef COREXY
#error BABYSTEPPING not implemented for COREXY yet.
#endif
#ifdef DELTA
#ifdef BABYSTEP_XY
#error BABYSTEPPING only implemented for Z axis on deltabots.
#endif
#endif
#endif
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
@ -302,6 +367,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define PS_ON_ASLEEP LOW
#endif
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//=============================Buffers ============================
//===========================================================================
@ -332,7 +400,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//adds support for experimental filament exchange support M600; requires display
#ifdef ULTIPANEL
//#define FILAMENTCHANGEENABLE
#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 3
#define FILAMENTCHANGE_YPOS 3
@ -341,6 +409,12 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define FILAMENTCHANGE_FINALRETRACT -100
#endif
#endif
#ifdef FILAMENTCHANGEENABLE
#ifdef EXTRUDER_RUNOUT_PREVENT
#error EXTRUDER_RUNOUT_PREVENT currently incompatible with FILAMENTCHANGE
#endif
#endif
//===========================================================================
//============================= Define Defines ============================
@ -349,6 +423,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
#endif
#if EXTRUDERS > 1 && defined HEATERS_PARALLEL
#error "You cannot use HEATERS_PARALLEL if EXTRUDERS > 1"
#endif
#if TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0
#define HEATER_0_USES_THERMISTOR

@ -2288,6 +2288,107 @@
#endif
/****************************************************************************************
* Cheaptronic v1.0
*
****************************************************************************************/
#if MOTHERBOARD == 2
#define KNOWN_BOARD 1
#ifndef __AVR_ATmega2560__
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif
#define LARGE_FLASH true
//X motor stepper
#define X_STEP_PIN 14
#define X_DIR_PIN 15
#define X_ENABLE_PIN 24
//X endstop
#define X_MIN_PIN 3
#define X_MAX_PIN -1
//Y motor stepper
#define Y_STEP_PIN 35
#define Y_DIR_PIN 36
#define Y_ENABLE_PIN 31
//Y endstop
#define Y_MIN_PIN 2
#define Y_MAX_PIN -1
//Z motor stepper
#define Z_STEP_PIN 40
#define Z_DIR_PIN 41
#define Z_ENABLE_PIN 37
//Z endstop
#define Z_MIN_PIN 5
#define Z_MAX_PIN -1
//Extruder 0 stepper
#define E0_STEP_PIN 26
#define E0_DIR_PIN 28
#define E0_ENABLE_PIN 25
//Extruder 1 stepper
#define E1_STEP_PIN 33
#define E1_DIR_PIN 34
#define E1_ENABLE_PIN 30
#define SDPOWER -1
#define SDSS -1
#define LED_PIN -1
//FAN
#define FAN_PIN -1
#define PS_ON_PIN -1
#define KILL_PIN -1
#define HEATER_0_PIN 19 // EXTRUDER 1
#define HEATER_1_PIN 23 // EXTRUDER 2
//HeatedBad
#define HEATER_BED_PIN 22
//Cheaptronic v1.0 hasent EXTRUDER 3
#define HEATER_2_PIN -1
//Temperature sensors
#define TEMP_0_PIN 15
#define TEMP_1_PIN 14
#define TEMP_2_PIN -1
#define TEMP_BED_PIN 13
//Cheaptronic v1.0 dont support LCD
#define LCD_PINS_RS -1
#define LCD_PINS_ENABLE -1
#define LCD_PINS_D4 -1
#define LCD_PINS_D5 -1
#define LCD_PINS_D6 -1
#define LCD_PINS_D7 -1
//Cheaptronic v1.0 dont support keypad
#define BTN_EN1 -1
#define BTN_EN2 -1
#define BTN_ENC -1
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
//Cheaptronic v1.0 does not use this port
#define SDCARDDETECT -1
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#ifndef KNOWN_BOARD

@ -186,9 +186,9 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
long acceleration = block->acceleration_st;
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
@ -197,7 +197,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;

@ -90,12 +90,16 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI)
#define ENCODER_STEPS_PER_MENU_ITEM 5
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#else
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
@ -207,7 +211,7 @@ static void lcd_status_screen()
else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
encoderPosition = 0;
}
else if (feedmultiply != 100)
{
@ -407,7 +411,7 @@ static void lcd_tune_menu()
#endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
#ifdef BABYSTEPPING
#ifdef BABYSTEP_XY
MENU_ITEM(submenu, "Babystep X", lcd_babystep_x);
@ -719,7 +723,7 @@ static void lcd_control_motion_menu()
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
MENU_ITEM_EDIT(bool, "Endstop abort", &abort_on_endstop_hit);
#endif
@ -781,7 +785,7 @@ static void lcd_sd_updir()
void lcd_sdcard_menu()
{
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
@ -795,7 +799,7 @@ void lcd_sdcard_menu()
}else{
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for(uint16_t i=0;i<fileCnt;i++)
{
if (_menuItemNr == _lineNr)
@ -982,14 +986,14 @@ void lcd_init()
#ifdef NEWPANEL
pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT);
pinMode(BTN_EN2,INPUT);
pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH);
#if BTN_ENC > 0
pinMode(BTN_ENC,INPUT);
pinMode(BTN_ENC,INPUT);
WRITE(BTN_ENC,HIGH);
#endif
#endif
#ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
@ -1007,9 +1011,9 @@ void lcd_init()
pinMode(SHIFT_EN,OUTPUT);
pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW);
#endif // SR_LCD_2W_NL
#endif // SR_LCD_2W_NL
#endif//!NEWPANEL
#if (SDCARDDETECT > 0)
@ -1020,28 +1024,28 @@ void lcd_init()
slow_buttons = 0;
#endif
lcd_buttons_update();
#ifdef ULTIPANEL
#ifdef ULTIPANEL
encoderDiff = 0;
#endif
#endif
}
void lcd_update()
{
static unsigned long timeoutToStatus = 0;
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
lcd_buttons_update();
#if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus))
{
lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init(); // to maybe revive the lcd if static electricty killed it.
if(lcd_oldcardstatus)
{
card.initsd();
@ -1054,7 +1058,7 @@ void lcd_update()
}
}
#endif//CARDINSERTED
if (lcd_next_update_millis < millis())
{
#ifdef ULTIPANEL
@ -1095,7 +1099,7 @@ void lcd_update()
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do
do
{
u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125,0);
@ -1105,7 +1109,7 @@ void lcd_update()
(*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() );
#else
#else
(*currentMenu)();
#endif
@ -1159,7 +1163,7 @@ void lcd_reset_alert_level()
void lcd_setcontrast(uint8_t value)
{
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
u8g.setContrast(lcd_contrast);
}
#endif
@ -1199,7 +1203,7 @@ void lcd_buttons_update()
WRITE(SHIFT_LD,HIGH);
unsigned char tmp_buttons=0;
for(int8_t i=0;i<8;i++)
{
{
newbutton = newbutton>>1;
if(READ(SHIFT_OUT))
newbutton|=(1<<7);
@ -1249,14 +1253,14 @@ void lcd_buttons_update()
}
void lcd_buzz(long duration, uint16_t freq)
{
{
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration,freq);
#endif
#endif
}
bool lcd_clicked()
{
bool lcd_clicked()
{
return LCD_CLICKED;
}
#endif//ULTIPANEL

Loading…
Cancel
Save