|
|
@ -7848,46 +7848,33 @@ void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, c
|
|
|
|
cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
|
|
|
|
cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
|
|
|
|
NOMORE(pcx, MESH_NUM_X_POINTS - 2);
|
|
|
|
NOMORE(pcx, MESH_NUM_X_POINTS - 2);
|
|
|
|
NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
|
|
|
|
NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
|
|
|
|
NOMORE(cx, MESH_NUM_X_POINTS - 2);
|
|
|
|
NOMORE(cx, MESH_NUM_X_POINTS - 2);
|
|
|
|
NOMORE(cy, MESH_NUM_Y_POINTS - 2);
|
|
|
|
NOMORE(cy, MESH_NUM_Y_POINTS - 2);
|
|
|
|
|
|
|
|
|
|
|
|
if (pcx == cx && pcy == cy) {
|
|
|
|
if (pcx == cx && pcy == cy) {
|
|
|
|
// Start and end on same mesh square
|
|
|
|
// Start and end on same mesh square
|
|
|
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
|
|
|
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
|
|
|
|
set_current_to_destination();
|
|
|
|
set_current_to_destination();
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float nx, ny, nz, ne, normalized_dist;
|
|
|
|
float nx, ny, nz, ne, normalized_dist;
|
|
|
|
if (cx > pcx && TEST(x_splits, cx)) {
|
|
|
|
int8_t gcx = max(pcx, cx), gcy = max(pcy, cy);
|
|
|
|
nx = mbl.get_probe_x(cx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
|
|
|
if (cx != pcx && TEST(x_splits, gcx)) {
|
|
|
|
|
|
|
|
nx = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
CBI(x_splits, cx);
|
|
|
|
CBI(x_splits, gcx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (cx < pcx && TEST(x_splits, pcx)) {
|
|
|
|
else if (cy != pcy && TEST(y_splits, gcy)) {
|
|
|
|
nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
|
|
|
ny = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
|
|
|
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
CBI(x_splits, pcx);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (cy > pcy && TEST(y_splits, cy)) {
|
|
|
|
|
|
|
|
ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
|
|
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
CBI(y_splits, cy);
|
|
|
|
CBI(y_splits, gcy);
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (cy < pcy && TEST(y_splits, pcy)) {
|
|
|
|
|
|
|
|
ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
|
|
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
|
|
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
CBI(y_splits, pcy);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
// Already split on a border
|
|
|
|
// Already split on a border
|
|
|
|