|  |  |  | @ -506,7 +506,9 @@ void stop(); | 
		
	
		
			
				|  |  |  |  | void get_available_commands(); | 
		
	
		
			
				|  |  |  |  | void process_next_command(); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); | 
		
	
		
			
				|  |  |  |  | #if ENABLED(ARC_SUPPORT) | 
		
	
		
			
				|  |  |  |  |   void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); | 
		
	
		
			
				|  |  |  |  | #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | void serial_echopair_P(const char* s_P, int v)           { serialprintPGM(s_P); SERIAL_ECHO(v); } | 
		
	
		
			
				|  |  |  |  | void serial_echopair_P(const char* s_P, long v)          { serialprintPGM(s_P); SERIAL_ECHO(v); } | 
		
	
	
		
			
				
					
					|  |  |  | @ -2461,32 +2463,34 @@ inline void gcode_G0_G1() { | 
		
	
		
			
				|  |  |  |  |  * G2: Clockwise Arc | 
		
	
		
			
				|  |  |  |  |  * G3: Counterclockwise Arc | 
		
	
		
			
				|  |  |  |  |  */ | 
		
	
		
			
				|  |  |  |  | inline void gcode_G2_G3(bool clockwise) { | 
		
	
		
			
				|  |  |  |  |   if (IsRunning()) { | 
		
	
		
			
				|  |  |  |  | #if ENABLED(ARC_SUPPORT) | 
		
	
		
			
				|  |  |  |  |   inline void gcode_G2_G3(bool clockwise) { | 
		
	
		
			
				|  |  |  |  |     if (IsRunning()) { | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     #if ENABLED(SF_ARC_FIX) | 
		
	
		
			
				|  |  |  |  |       bool relative_mode_backup = relative_mode; | 
		
	
		
			
				|  |  |  |  |       relative_mode = true; | 
		
	
		
			
				|  |  |  |  |     #endif | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(SF_ARC_FIX) | 
		
	
		
			
				|  |  |  |  |         bool relative_mode_backup = relative_mode; | 
		
	
		
			
				|  |  |  |  |         relative_mode = true; | 
		
	
		
			
				|  |  |  |  |       #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     gcode_get_destination(); | 
		
	
		
			
				|  |  |  |  |       gcode_get_destination(); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     #if ENABLED(SF_ARC_FIX) | 
		
	
		
			
				|  |  |  |  |       relative_mode = relative_mode_backup; | 
		
	
		
			
				|  |  |  |  |     #endif | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(SF_ARC_FIX) | 
		
	
		
			
				|  |  |  |  |         relative_mode = relative_mode_backup; | 
		
	
		
			
				|  |  |  |  |       #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     // Center of arc as offset from current_position
 | 
		
	
		
			
				|  |  |  |  |     float arc_offset[2] = { | 
		
	
		
			
				|  |  |  |  |       code_seen('I') ? code_value() : 0, | 
		
	
		
			
				|  |  |  |  |       code_seen('J') ? code_value() : 0 | 
		
	
		
			
				|  |  |  |  |     }; | 
		
	
		
			
				|  |  |  |  |       // Center of arc as offset from current_position
 | 
		
	
		
			
				|  |  |  |  |       float arc_offset[2] = { | 
		
	
		
			
				|  |  |  |  |         code_seen('I') ? code_value() : 0, | 
		
	
		
			
				|  |  |  |  |         code_seen('J') ? code_value() : 0 | 
		
	
		
			
				|  |  |  |  |       }; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     // Send an arc to the planner
 | 
		
	
		
			
				|  |  |  |  |     plan_arc(destination, arc_offset, clockwise); | 
		
	
		
			
				|  |  |  |  |       // Send an arc to the planner
 | 
		
	
		
			
				|  |  |  |  |       plan_arc(destination, arc_offset, clockwise); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     refresh_cmd_timeout(); | 
		
	
		
			
				|  |  |  |  |       refresh_cmd_timeout(); | 
		
	
		
			
				|  |  |  |  |     } | 
		
	
		
			
				|  |  |  |  |   } | 
		
	
		
			
				|  |  |  |  | } | 
		
	
		
			
				|  |  |  |  | #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | /**
 | 
		
	
		
			
				|  |  |  |  |  * G4: Dwell S<seconds> or P<milliseconds> | 
		
	
	
		
			
				
					
					|  |  |  | @ -6484,7 +6488,7 @@ void process_next_command() { | 
		
	
		
			
				|  |  |  |  |         break; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       // G2, G3
 | 
		
	
		
			
				|  |  |  |  |       #if DISABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |         case 2: // G2  - CW ARC
 | 
		
	
		
			
				|  |  |  |  |         case 3: // G3  - CCW ARC
 | 
		
	
		
			
				|  |  |  |  |           gcode_G2_G3(codenum == 2); | 
		
	
	
		
			
				
					
					|  |  |  | @ -7423,147 +7427,157 @@ void prepare_move() { | 
		
	
		
			
				|  |  |  |  |   set_current_to_destination(); | 
		
	
		
			
				|  |  |  |  | } | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | /**
 | 
		
	
		
			
				|  |  |  |  |  * Plan an arc in 2 dimensions | 
		
	
		
			
				|  |  |  |  |  * | 
		
	
		
			
				|  |  |  |  |  * The arc is approximated by generating many small linear segments. | 
		
	
		
			
				|  |  |  |  |  * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) | 
		
	
		
			
				|  |  |  |  |  * Arcs should only be made relatively large (over 5mm), as larger arcs with | 
		
	
		
			
				|  |  |  |  |  * larger segments will tend to be more efficient. Your slicer should have | 
		
	
		
			
				|  |  |  |  |  * options for G2/G3 arc generation. In future these options may be GCode tunable. | 
		
	
		
			
				|  |  |  |  |  */ | 
		
	
		
			
				|  |  |  |  | void plan_arc( | 
		
	
		
			
				|  |  |  |  |   float target[NUM_AXIS], // Destination position
 | 
		
	
		
			
				|  |  |  |  |   float* offset,          // Center of rotation relative to current_position
 | 
		
	
		
			
				|  |  |  |  |   uint8_t clockwise       // Clockwise?
 | 
		
	
		
			
				|  |  |  |  | ) { | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), | 
		
	
		
			
				|  |  |  |  |         center_X = current_position[X_AXIS] + offset[X_AXIS], | 
		
	
		
			
				|  |  |  |  |         center_Y = current_position[Y_AXIS] + offset[Y_AXIS], | 
		
	
		
			
				|  |  |  |  |         linear_travel = target[Z_AXIS] - current_position[Z_AXIS], | 
		
	
		
			
				|  |  |  |  |         extruder_travel = target[E_AXIS] - current_position[E_AXIS], | 
		
	
		
			
				|  |  |  |  |         r_X = -offset[X_AXIS],  // Radius vector from center to current location
 | 
		
	
		
			
				|  |  |  |  |         r_Y = -offset[Y_AXIS], | 
		
	
		
			
				|  |  |  |  |         rt_X = target[X_AXIS] - center_X, | 
		
	
		
			
				|  |  |  |  |         rt_Y = target[Y_AXIS] - center_Y; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
		
	
		
			
				|  |  |  |  |   float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); | 
		
	
		
			
				|  |  |  |  |   if (angular_travel < 0) angular_travel += RADIANS(360); | 
		
	
		
			
				|  |  |  |  |   if (clockwise) angular_travel -= RADIANS(360); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // Make a circle if the angular rotation is 0
 | 
		
	
		
			
				|  |  |  |  |   if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) | 
		
	
		
			
				|  |  |  |  |     angular_travel += RADIANS(360); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); | 
		
	
		
			
				|  |  |  |  |   if (mm_of_travel < 0.001) return; | 
		
	
		
			
				|  |  |  |  |   uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); | 
		
	
		
			
				|  |  |  |  |   if (segments == 0) segments = 1; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   float theta_per_segment = angular_travel / segments; | 
		
	
		
			
				|  |  |  |  |   float linear_per_segment = linear_travel / segments; | 
		
	
		
			
				|  |  |  |  |   float extruder_per_segment = extruder_travel / segments; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | #if ENABLED(ARC_SUPPORT) | 
		
	
		
			
				|  |  |  |  |   /**
 | 
		
	
		
			
				|  |  |  |  |    * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | 
		
	
		
			
				|  |  |  |  |    * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | 
		
	
		
			
				|  |  |  |  |    *     r_T = [cos(phi) -sin(phi); | 
		
	
		
			
				|  |  |  |  |    *            sin(phi)  cos(phi] * r ; | 
		
	
		
			
				|  |  |  |  |    * Plan an arc in 2 dimensions | 
		
	
		
			
				|  |  |  |  |    * | 
		
	
		
			
				|  |  |  |  |    * For arc generation, the center of the circle is the axis of rotation and the radius vector is | 
		
	
		
			
				|  |  |  |  |    * defined from the circle center to the initial position. Each line segment is formed by successive | 
		
	
		
			
				|  |  |  |  |    * vector rotations. This requires only two cos() and sin() computations to form the rotation | 
		
	
		
			
				|  |  |  |  |    * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | 
		
	
		
			
				|  |  |  |  |    * all double numbers are single precision on the Arduino. (True double precision will not have | 
		
	
		
			
				|  |  |  |  |    * round off issues for CNC applications.) Single precision error can accumulate to be greater than | 
		
	
		
			
				|  |  |  |  |    * tool precision in some cases. Therefore, arc path correction is implemented. | 
		
	
		
			
				|  |  |  |  |    * | 
		
	
		
			
				|  |  |  |  |    * Small angle approximation may be used to reduce computation overhead further. This approximation | 
		
	
		
			
				|  |  |  |  |    * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | 
		
	
		
			
				|  |  |  |  |    * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | 
		
	
		
			
				|  |  |  |  |    * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for | 
		
	
		
			
				|  |  |  |  |    * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | 
		
	
		
			
				|  |  |  |  |    * issue for CNC machines with the single precision Arduino calculations. | 
		
	
		
			
				|  |  |  |  |    * | 
		
	
		
			
				|  |  |  |  |    * This approximation also allows plan_arc to immediately insert a line segment into the planner | 
		
	
		
			
				|  |  |  |  |    * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | 
		
	
		
			
				|  |  |  |  |    * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. | 
		
	
		
			
				|  |  |  |  |    * This is important when there are successive arc motions. | 
		
	
		
			
				|  |  |  |  |    * The arc is approximated by generating many small linear segments. | 
		
	
		
			
				|  |  |  |  |    * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) | 
		
	
		
			
				|  |  |  |  |    * Arcs should only be made relatively large (over 5mm), as larger arcs with | 
		
	
		
			
				|  |  |  |  |    * larger segments will tend to be more efficient. Your slicer should have | 
		
	
		
			
				|  |  |  |  |    * options for G2/G3 arc generation. In future these options may be GCode tunable. | 
		
	
		
			
				|  |  |  |  |    */ | 
		
	
		
			
				|  |  |  |  |   // Vector rotation matrix values
 | 
		
	
		
			
				|  |  |  |  |   float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
 | 
		
	
		
			
				|  |  |  |  |   float sin_T = theta_per_segment; | 
		
	
		
			
				|  |  |  |  |   void plan_arc( | 
		
	
		
			
				|  |  |  |  |     float target[NUM_AXIS], // Destination position
 | 
		
	
		
			
				|  |  |  |  |     float* offset,          // Center of rotation relative to current_position
 | 
		
	
		
			
				|  |  |  |  |     uint8_t clockwise       // Clockwise?
 | 
		
	
		
			
				|  |  |  |  |   ) { | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   float arc_target[NUM_AXIS]; | 
		
	
		
			
				|  |  |  |  |   float sin_Ti, cos_Ti, r_new_Y; | 
		
	
		
			
				|  |  |  |  |   uint16_t i; | 
		
	
		
			
				|  |  |  |  |   int8_t count = 0; | 
		
	
		
			
				|  |  |  |  |     float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), | 
		
	
		
			
				|  |  |  |  |           center_X = current_position[X_AXIS] + offset[X_AXIS], | 
		
	
		
			
				|  |  |  |  |           center_Y = current_position[Y_AXIS] + offset[Y_AXIS], | 
		
	
		
			
				|  |  |  |  |           linear_travel = target[Z_AXIS] - current_position[Z_AXIS], | 
		
	
		
			
				|  |  |  |  |           extruder_travel = target[E_AXIS] - current_position[E_AXIS], | 
		
	
		
			
				|  |  |  |  |           r_X = -offset[X_AXIS],  // Radius vector from center to current location
 | 
		
	
		
			
				|  |  |  |  |           r_Y = -offset[Y_AXIS], | 
		
	
		
			
				|  |  |  |  |           rt_X = target[X_AXIS] - center_X, | 
		
	
		
			
				|  |  |  |  |           rt_Y = target[Y_AXIS] - center_Y; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // Initialize the linear axis
 | 
		
	
		
			
				|  |  |  |  |   arc_target[Z_AXIS] = current_position[Z_AXIS]; | 
		
	
		
			
				|  |  |  |  |     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
		
	
		
			
				|  |  |  |  |     float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); | 
		
	
		
			
				|  |  |  |  |     if (angular_travel < 0) angular_travel += RADIANS(360); | 
		
	
		
			
				|  |  |  |  |     if (clockwise) angular_travel -= RADIANS(360); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // Initialize the extruder axis
 | 
		
	
		
			
				|  |  |  |  |   arc_target[E_AXIS] = current_position[E_AXIS]; | 
		
	
		
			
				|  |  |  |  |     // Make a circle if the angular rotation is 0
 | 
		
	
		
			
				|  |  |  |  |     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) | 
		
	
		
			
				|  |  |  |  |       angular_travel += RADIANS(360); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; | 
		
	
		
			
				|  |  |  |  |     float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); | 
		
	
		
			
				|  |  |  |  |     if (mm_of_travel < 0.001) return; | 
		
	
		
			
				|  |  |  |  |     uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); | 
		
	
		
			
				|  |  |  |  |     if (segments == 0) segments = 1; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   for (i = 1; i < segments; i++) { // Iterate (segments-1) times
 | 
		
	
		
			
				|  |  |  |  |     float theta_per_segment = angular_travel / segments; | 
		
	
		
			
				|  |  |  |  |     float linear_per_segment = linear_travel / segments; | 
		
	
		
			
				|  |  |  |  |     float extruder_per_segment = extruder_travel / segments; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     if (++count < N_ARC_CORRECTION) { | 
		
	
		
			
				|  |  |  |  |       // Apply vector rotation matrix to previous r_X / 1
 | 
		
	
		
			
				|  |  |  |  |       r_new_Y = r_X * sin_T + r_Y * cos_T; | 
		
	
		
			
				|  |  |  |  |       r_X = r_X * cos_T - r_Y * sin_T; | 
		
	
		
			
				|  |  |  |  |       r_Y = r_new_Y; | 
		
	
		
			
				|  |  |  |  |     } | 
		
	
		
			
				|  |  |  |  |     else { | 
		
	
		
			
				|  |  |  |  |       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | 
		
	
		
			
				|  |  |  |  |       // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | 
		
	
		
			
				|  |  |  |  |       // To reduce stuttering, the sin and cos could be computed at different times.
 | 
		
	
		
			
				|  |  |  |  |       // For now, compute both at the same time.
 | 
		
	
		
			
				|  |  |  |  |       cos_Ti = cos(i * theta_per_segment); | 
		
	
		
			
				|  |  |  |  |       sin_Ti = sin(i * theta_per_segment); | 
		
	
		
			
				|  |  |  |  |       r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; | 
		
	
		
			
				|  |  |  |  |       r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; | 
		
	
		
			
				|  |  |  |  |       count = 0; | 
		
	
		
			
				|  |  |  |  |     } | 
		
	
		
			
				|  |  |  |  |     /**
 | 
		
	
		
			
				|  |  |  |  |      * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | 
		
	
		
			
				|  |  |  |  |      * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | 
		
	
		
			
				|  |  |  |  |      *     r_T = [cos(phi) -sin(phi); | 
		
	
		
			
				|  |  |  |  |      *            sin(phi)  cos(phi] * r ; | 
		
	
		
			
				|  |  |  |  |      * | 
		
	
		
			
				|  |  |  |  |      * For arc generation, the center of the circle is the axis of rotation and the radius vector is | 
		
	
		
			
				|  |  |  |  |      * defined from the circle center to the initial position. Each line segment is formed by successive | 
		
	
		
			
				|  |  |  |  |      * vector rotations. This requires only two cos() and sin() computations to form the rotation | 
		
	
		
			
				|  |  |  |  |      * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | 
		
	
		
			
				|  |  |  |  |      * all double numbers are single precision on the Arduino. (True double precision will not have | 
		
	
		
			
				|  |  |  |  |      * round off issues for CNC applications.) Single precision error can accumulate to be greater than | 
		
	
		
			
				|  |  |  |  |      * tool precision in some cases. Therefore, arc path correction is implemented. | 
		
	
		
			
				|  |  |  |  |      * | 
		
	
		
			
				|  |  |  |  |      * Small angle approximation may be used to reduce computation overhead further. This approximation | 
		
	
		
			
				|  |  |  |  |      * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | 
		
	
		
			
				|  |  |  |  |      * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | 
		
	
		
			
				|  |  |  |  |      * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for | 
		
	
		
			
				|  |  |  |  |      * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | 
		
	
		
			
				|  |  |  |  |      * issue for CNC machines with the single precision Arduino calculations. | 
		
	
		
			
				|  |  |  |  |      * | 
		
	
		
			
				|  |  |  |  |      * This approximation also allows plan_arc to immediately insert a line segment into the planner | 
		
	
		
			
				|  |  |  |  |      * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | 
		
	
		
			
				|  |  |  |  |      * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. | 
		
	
		
			
				|  |  |  |  |      * This is important when there are successive arc motions. | 
		
	
		
			
				|  |  |  |  |      */ | 
		
	
		
			
				|  |  |  |  |     // Vector rotation matrix values
 | 
		
	
		
			
				|  |  |  |  |     float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
 | 
		
	
		
			
				|  |  |  |  |     float sin_T = theta_per_segment; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     // Update arc_target location
 | 
		
	
		
			
				|  |  |  |  |     arc_target[X_AXIS] = center_X + r_X; | 
		
	
		
			
				|  |  |  |  |     arc_target[Y_AXIS] = center_Y + r_Y; | 
		
	
		
			
				|  |  |  |  |     arc_target[Z_AXIS] += linear_per_segment; | 
		
	
		
			
				|  |  |  |  |     arc_target[E_AXIS] += extruder_per_segment; | 
		
	
		
			
				|  |  |  |  |     float arc_target[NUM_AXIS]; | 
		
	
		
			
				|  |  |  |  |     float sin_Ti, cos_Ti, r_new_Y; | 
		
	
		
			
				|  |  |  |  |     uint16_t i; | 
		
	
		
			
				|  |  |  |  |     int8_t count = 0; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     clamp_to_software_endstops(arc_target); | 
		
	
		
			
				|  |  |  |  |     // Initialize the linear axis
 | 
		
	
		
			
				|  |  |  |  |     arc_target[Z_AXIS] = current_position[Z_AXIS]; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     #if ENABLED(DELTA) || ENABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |       calculate_delta(arc_target); | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(AUTO_BED_LEVELING_FEATURE) | 
		
	
		
			
				|  |  |  |  |         adjust_delta(arc_target); | 
		
	
		
			
				|  |  |  |  |     // Initialize the extruder axis
 | 
		
	
		
			
				|  |  |  |  |     arc_target[E_AXIS] = current_position[E_AXIS]; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     millis_t previous_ms = millis(); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     for (i = 1; i < segments; i++) { // Iterate (segments-1) times
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       millis_t now = millis(); | 
		
	
		
			
				|  |  |  |  |       if (now - previous_ms > 200UL) { | 
		
	
		
			
				|  |  |  |  |         previous_ms = now; | 
		
	
		
			
				|  |  |  |  |         idle(); | 
		
	
		
			
				|  |  |  |  |       } | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       if (++count < N_ARC_CORRECTION) { | 
		
	
		
			
				|  |  |  |  |         // Apply vector rotation matrix to previous r_X / 1
 | 
		
	
		
			
				|  |  |  |  |         r_new_Y = r_X * sin_T + r_Y * cos_T; | 
		
	
		
			
				|  |  |  |  |         r_X = r_X * cos_T - r_Y * sin_T; | 
		
	
		
			
				|  |  |  |  |         r_Y = r_new_Y; | 
		
	
		
			
				|  |  |  |  |       } | 
		
	
		
			
				|  |  |  |  |       else { | 
		
	
		
			
				|  |  |  |  |         // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | 
		
	
		
			
				|  |  |  |  |         // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | 
		
	
		
			
				|  |  |  |  |         // To reduce stuttering, the sin and cos could be computed at different times.
 | 
		
	
		
			
				|  |  |  |  |         // For now, compute both at the same time.
 | 
		
	
		
			
				|  |  |  |  |         cos_Ti = cos(i * theta_per_segment); | 
		
	
		
			
				|  |  |  |  |         sin_Ti = sin(i * theta_per_segment); | 
		
	
		
			
				|  |  |  |  |         r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; | 
		
	
		
			
				|  |  |  |  |         r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; | 
		
	
		
			
				|  |  |  |  |         count = 0; | 
		
	
		
			
				|  |  |  |  |       } | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       // Update arc_target location
 | 
		
	
		
			
				|  |  |  |  |       arc_target[X_AXIS] = center_X + r_X; | 
		
	
		
			
				|  |  |  |  |       arc_target[Y_AXIS] = center_Y + r_Y; | 
		
	
		
			
				|  |  |  |  |       arc_target[Z_AXIS] += linear_per_segment; | 
		
	
		
			
				|  |  |  |  |       arc_target[E_AXIS] += extruder_per_segment; | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       clamp_to_software_endstops(arc_target); | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(DELTA) || ENABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |         calculate_delta(arc_target); | 
		
	
		
			
				|  |  |  |  |         #if ENABLED(AUTO_BED_LEVELING_FEATURE) | 
		
	
		
			
				|  |  |  |  |           adjust_delta(arc_target); | 
		
	
		
			
				|  |  |  |  |         #endif | 
		
	
		
			
				|  |  |  |  |         planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |       #else | 
		
	
		
			
				|  |  |  |  |         planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |       #endif | 
		
	
		
			
				|  |  |  |  |       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |     } | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     // Ensure last segment arrives at target location.
 | 
		
	
		
			
				|  |  |  |  |     #if ENABLED(DELTA) || ENABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |       calculate_delta(target); | 
		
	
		
			
				|  |  |  |  |       #if ENABLED(AUTO_BED_LEVELING_FEATURE) | 
		
	
		
			
				|  |  |  |  |         adjust_delta(target); | 
		
	
		
			
				|  |  |  |  |       #endif | 
		
	
		
			
				|  |  |  |  |       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |     #else | 
		
	
		
			
				|  |  |  |  |       planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |       planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |     #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     // As far as the parser is concerned, the position is now == target. In reality the
 | 
		
	
		
			
				|  |  |  |  |     // motion control system might still be processing the action and the real tool position
 | 
		
	
		
			
				|  |  |  |  |     // in any intermediate location.
 | 
		
	
		
			
				|  |  |  |  |     set_current_to_destination(); | 
		
	
		
			
				|  |  |  |  |   } | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // Ensure last segment arrives at target location.
 | 
		
	
		
			
				|  |  |  |  |   #if ENABLED(DELTA) || ENABLED(SCARA) | 
		
	
		
			
				|  |  |  |  |     calculate_delta(target); | 
		
	
		
			
				|  |  |  |  |     #if ENABLED(AUTO_BED_LEVELING_FEATURE) | 
		
	
		
			
				|  |  |  |  |       adjust_delta(target); | 
		
	
		
			
				|  |  |  |  |     #endif | 
		
	
		
			
				|  |  |  |  |     planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |   #else | 
		
	
		
			
				|  |  |  |  |     planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | 
		
	
		
			
				|  |  |  |  |   #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |   // As far as the parser is concerned, the position is now == target. In reality the
 | 
		
	
		
			
				|  |  |  |  |   // motion control system might still be processing the action and the real tool position
 | 
		
	
		
			
				|  |  |  |  |   // in any intermediate location.
 | 
		
	
		
			
				|  |  |  |  |   set_current_to_destination(); | 
		
	
		
			
				|  |  |  |  | } | 
		
	
		
			
				|  |  |  |  | #endif | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | #if HAS_CONTROLLERFAN | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
	
		
			
				
					
					|  |  |  | 
 |