Ensure ADC conversion is complete before reading (#11336)

The current Marlin implementation relies on a timer interrupt to start the ADC conversion and read it. However in some circumstances the interrupt can be delayed resulting in insufficient time being available for the ADC conversion. This results in a bad reading and false temperature fluctuations. These changes make sure that the conversion is complete (by checking the ADC hardware via the HAL) before reading a value.

See: https://github.com/MarlinFirmware/Marlin/issues/11323
2.0.x
Andy Shaw 6 years ago committed by Scott Lahteine
parent e2aa635e70
commit 624986d423

@ -345,7 +345,8 @@ inline void HAL_adc_init(void) {
#define HAL_START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
#define HAL_READ_ADC ADC
#define HAL_READ_ADC() ADC
#define HAL_ADC_READY() !TEST(ADCSRA, ADSC)
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin

@ -141,7 +141,8 @@ void eeprom_update_block (const void *__src, void *__dst, size_t __n);
inline void HAL_adc_init(void) {}//todo
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
#define HAL_READ_ADC() HAL_adc_result
#define HAL_ADC_READY() true
void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(void);

@ -109,7 +109,8 @@ void eeprom_update_block (const void *__src, void *__dst, size_t __n);
void HAL_adc_init(void);
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
#define HAL_READ_ADC() HAL_adc_result
#define HAL_ADC_READY() true
void HAL_adc_start_conversion (uint8_t adc_pin);

@ -140,11 +140,13 @@ uint8_t spiRec(uint32_t chan);
// ADC
#define HAL_ANALOG_SELECT(pin) HAL_adc_enable_channel(pin)
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_get_result()
#define HAL_READ_ADC() HAL_adc_get_result()
#define HAL_ADC_READY() HAL_adc_finished()
void HAL_adc_init(void);
void HAL_adc_enable_channel(int pin);
void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(void);
bool HAL_adc_finished(void);
#endif // _HAL_LPC1768_H_

@ -224,7 +224,8 @@ void eeprom_update_block (const void *__src, void *__dst, size_t __n);
void HAL_adc_init(void);
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
#define HAL_READ_ADC() HAL_adc_result
#define HAL_ADC_READY() true
void HAL_adc_start_conversion(const uint8_t adc_pin);

@ -228,7 +228,8 @@ void eeprom_update_block (const void *__src, void *__dst, size_t __n);
inline void HAL_adc_init(void) {}
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
#define HAL_READ_ADC() HAL_adc_result
#define HAL_ADC_READY() true
void HAL_adc_start_conversion(const uint8_t adc_pin);

@ -214,7 +214,8 @@ void eeprom_update_block (const void *__src, void *__dst, size_t __n);
inline void HAL_adc_init(void) {}
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_result
#define HAL_READ_ADC() HAL_adc_result
#define HAL_ADC_READY() true
void HAL_adc_start_conversion(const uint8_t adc_pin);

@ -142,7 +142,8 @@ uint8_t spiRec(uint32_t chan);
void HAL_adc_init();
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC HAL_adc_get_result()
#define HAL_READ_ADC() HAL_adc_get_result()
#define HAL_ADC_READY() true
#define HAL_ANALOG_SELECT(pin) NOOP;

@ -1679,6 +1679,87 @@ void Temperature::set_current_temp_raw() {
temp_meas_ready = true;
}
void Temperature::readings_ready() {
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
ZERO(raw_temp_value);
#if HAS_HEATED_BED
raw_temp_bed_value = 0;
#endif
#if HAS_TEMP_CHAMBER
raw_temp_chamber_value = 0;
#endif
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#else
TEMPDIR(0)
#endif
#if HOTENDS > 1
, TEMPDIR(1)
#if HOTENDS > 2
, TEMPDIR(2)
#if HOTENDS > 3
, TEMPDIR(3)
#if HOTENDS > 4
, TEMPDIR(4)
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
const bool heater_on = 0 <
#if ENABLED(PIDTEMP)
soft_pwm_amount[e]
#else
target_temperature[e]
#endif
;
if (rawtemp > maxttemp_raw[e] * tdir && heater_on) max_temp_error(e);
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && heater_on) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
#if HAS_HEATED_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
const bool bed_on = 0 <
#if ENABLED(PIDTEMPBED)
soft_pwm_amount_bed
#else
target_temperature_bed
#endif
;
if (current_temperature_bed_raw GEBED bed_maxttemp_raw && bed_on) max_temp_error(-1);
if (bed_minttemp_raw GEBED current_temperature_bed_raw && bed_on) min_temp_error(-1);
#endif
}
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
@ -1996,6 +2077,12 @@ void Temperature::isr() {
*
* This gives each ADC 0.9765ms to charge up.
*/
#define ACCUMULATE_ADC(var) do{ \
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
else var += HAL_READ_ADC(); \
}while(0)
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
switch (adc_sensor_state) {
@ -2005,21 +2092,30 @@ void Temperature::isr() {
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break;
}
else
adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
else {
adc_sensor_state = StartSampling; // Fall-through to start sampling
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
}
}
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
readings_ready();
}
break;
#if HAS_TEMP_ADC_0
case PrepareTemp_0:
HAL_START_ADC(TEMP_0_PIN);
break;
case MeasureTemp_0:
raw_temp_value[0] += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_value[0]);
break;
#endif
@ -2028,7 +2124,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_BED_PIN);
break;
case MeasureTemp_BED:
raw_temp_bed_value += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_bed_value);
break;
#endif
@ -2037,7 +2133,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_CHAMBER_PIN);
break;
case MeasureTemp_CHAMBER:
raw_temp_chamber_value += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_chamber_value);
break;
#endif
@ -2046,7 +2142,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_1_PIN);
break;
case MeasureTemp_1:
raw_temp_value[1] += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_value[1]);
break;
#endif
@ -2055,7 +2151,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_2_PIN);
break;
case MeasureTemp_2:
raw_temp_value[2] += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_value[2]);
break;
#endif
@ -2064,7 +2160,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_3_PIN);
break;
case MeasureTemp_3:
raw_temp_value[3] += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_value[3]);
break;
#endif
@ -2073,7 +2169,7 @@ void Temperature::isr() {
HAL_START_ADC(TEMP_4_PIN);
break;
case MeasureTemp_4:
raw_temp_value[4] += HAL_READ_ADC;
ACCUMULATE_ADC(raw_temp_value[4]);
break;
#endif
@ -2082,9 +2178,11 @@ void Temperature::isr() {
HAL_START_ADC(FILWIDTH_PIN);
break;
case Measure_FILWIDTH:
if (HAL_READ_ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
raw_filwidth_value += ((unsigned long)HAL_READ_ADC << 7); // Add new ADC reading, scaled by 128
raw_filwidth_value += ((unsigned long)HAL_READ_ADC() << 7); // Add new ADC reading, scaled by 128
}
break;
#endif
@ -2094,8 +2192,10 @@ void Temperature::isr() {
HAL_START_ADC(ADC_KEYPAD_PIN);
break;
case Measure_ADC_KEY:
if (ADCKey_count < 16) {
raw_ADCKey_value = HAL_READ_ADC;
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (ADCKey_count < 16) {
raw_ADCKey_value = HAL_READ_ADC();
if (raw_ADCKey_value > 900) {
//ADC Key release
ADCKey_count = 0;
@ -2113,94 +2213,12 @@ void Temperature::isr() {
} // switch(adc_sensor_state)
if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
// Go to the next state
adc_sensor_state = next_sensor_state;
temp_count = 0;
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
ZERO(raw_temp_value);
#if HAS_HEATED_BED
raw_temp_bed_value = 0;
#endif
#if HAS_TEMP_CHAMBER
raw_temp_chamber_value = 0;
#endif
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#else
TEMPDIR(0)
#endif
#if HOTENDS > 1
, TEMPDIR(1)
#if HOTENDS > 2
, TEMPDIR(2)
#if HOTENDS > 3
, TEMPDIR(3)
#if HOTENDS > 4
, TEMPDIR(4)
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
const bool heater_on = 0 <
#if ENABLED(PIDTEMP)
soft_pwm_amount[e]
#else
target_temperature[e]
#endif
;
if (rawtemp > maxttemp_raw[e] * tdir && heater_on) max_temp_error(e);
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && heater_on) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
#if HAS_HEATED_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
const bool bed_on = 0 <
#if ENABLED(PIDTEMPBED)
soft_pwm_amount_bed
#else
target_temperature_bed
#endif
;
if (current_temperature_bed_raw GEBED bed_maxttemp_raw && bed_on) max_temp_error(-1);
if (bed_minttemp_raw GEBED current_temperature_bed_raw && bed_on) min_temp_error(-1);
#endif
} // temp_count >= OVERSAMPLENR
// Go to the next state, up to SensorsReady
adc_sensor_state = (ADCSensorState)(int(adc_sensor_state) + 1);
if (adc_sensor_state > SensorsReady) adc_sensor_state = (ADCSensorState)0;
//
// Additional ~1KHz Tasks
//
#if ENABLED(BABYSTEPPING)
LOOP_XYZ(axis) {

@ -52,6 +52,7 @@
* States for ADC reading in the ISR
*/
enum ADCSensorState : char {
StartSampling,
#if HAS_TEMP_ADC_0
PrepareTemp_0,
MeasureTemp_0,
@ -328,6 +329,7 @@ class Temperature {
/**
* Called from the Temperature ISR
*/
static void readings_ready();
static void isr();
/**

Loading…
Cancel
Save