|
|
|
@ -138,7 +138,7 @@ planner_settings_t Planner::settings; // Initialized by settings.load(
|
|
|
|
|
|
|
|
|
|
uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2
|
|
|
|
|
|
|
|
|
|
float Planner::steps_to_mm[DISTINCT_AXES]; // (mm) Millimeters per step
|
|
|
|
|
float Planner::mm_per_step[DISTINCT_AXES]; // (mm) Millimeters per step
|
|
|
|
|
|
|
|
|
|
#if HAS_JUNCTION_DEVIATION
|
|
|
|
|
float Planner::junction_deviation_mm; // (mm) M205 J
|
|
|
|
@ -1702,7 +1702,7 @@ void Planner::endstop_triggered(const AxisEnum axis) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float Planner::triggered_position_mm(const AxisEnum axis) {
|
|
|
|
|
return stepper.triggered_position(axis) * steps_to_mm[axis];
|
|
|
|
|
return stepper.triggered_position(axis) * mm_per_step[axis];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Planner::finish_and_disable() {
|
|
|
|
@ -1759,7 +1759,7 @@ float Planner::get_axis_position_mm(const AxisEnum axis) {
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return axis_steps * steps_to_mm[axis];
|
|
|
|
|
return axis_steps * mm_per_step[axis];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -2015,51 +2015,51 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
|
|
|
|
|
} steps_dist_mm;
|
|
|
|
|
#if IS_CORE
|
|
|
|
|
#if CORE_IS_XY
|
|
|
|
|
steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.z = dc * steps_to_mm[Z_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da + db) * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.b = CORESIGN(da - db) * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.head.x = da * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * mm_per_step[B_AXIS];
|
|
|
|
|
steps_dist_mm.z = dc * mm_per_step[Z_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da + db) * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.b = CORESIGN(da - db) * mm_per_step[B_AXIS];
|
|
|
|
|
#elif CORE_IS_XZ
|
|
|
|
|
steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.y = db * steps_to_mm[Y_AXIS];
|
|
|
|
|
steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da + dc) * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.c = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
|
|
|
|
|
steps_dist_mm.head.x = da * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.y = db * mm_per_step[Y_AXIS];
|
|
|
|
|
steps_dist_mm.head.z = dc * mm_per_step[C_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da + dc) * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.c = CORESIGN(da - dc) * mm_per_step[C_AXIS];
|
|
|
|
|
#elif CORE_IS_YZ
|
|
|
|
|
steps_dist_mm.x = da * steps_to_mm[X_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
|
|
|
|
|
steps_dist_mm.b = (db + dc) * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.c = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
|
|
|
|
|
steps_dist_mm.x = da * mm_per_step[X_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * mm_per_step[B_AXIS];
|
|
|
|
|
steps_dist_mm.head.z = dc * mm_per_step[C_AXIS];
|
|
|
|
|
steps_dist_mm.b = (db + dc) * mm_per_step[B_AXIS];
|
|
|
|
|
steps_dist_mm.c = CORESIGN(db - dc) * mm_per_step[C_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 4
|
|
|
|
|
steps_dist_mm.i = di * steps_to_mm[I_AXIS];
|
|
|
|
|
steps_dist_mm.i = di * mm_per_step[I_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 5
|
|
|
|
|
steps_dist_mm.j = dj * steps_to_mm[J_AXIS];
|
|
|
|
|
steps_dist_mm.j = dj * mm_per_step[J_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 6
|
|
|
|
|
steps_dist_mm.k = dk * steps_to_mm[K_AXIS];
|
|
|
|
|
steps_dist_mm.k = dk * mm_per_step[K_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
#elif ENABLED(MARKFORGED_XY)
|
|
|
|
|
steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.z = dc * steps_to_mm[Z_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da - db) * steps_to_mm[A_AXIS];
|
|
|
|
|
steps_dist_mm.b = db * steps_to_mm[B_AXIS];
|
|
|
|
|
steps_dist_mm.head.x = da * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.head.y = db * mm_per_step[B_AXIS];
|
|
|
|
|
steps_dist_mm.z = dc * mm_per_step[Z_AXIS];
|
|
|
|
|
steps_dist_mm.a = (da - db) * mm_per_step[A_AXIS];
|
|
|
|
|
steps_dist_mm.b = db * mm_per_step[B_AXIS];
|
|
|
|
|
#else
|
|
|
|
|
LINEAR_AXIS_CODE(
|
|
|
|
|
steps_dist_mm.a = da * steps_to_mm[A_AXIS],
|
|
|
|
|
steps_dist_mm.b = db * steps_to_mm[B_AXIS],
|
|
|
|
|
steps_dist_mm.c = dc * steps_to_mm[C_AXIS],
|
|
|
|
|
steps_dist_mm.i = di * steps_to_mm[I_AXIS],
|
|
|
|
|
steps_dist_mm.j = dj * steps_to_mm[J_AXIS],
|
|
|
|
|
steps_dist_mm.k = dk * steps_to_mm[K_AXIS]
|
|
|
|
|
steps_dist_mm.a = da * mm_per_step[A_AXIS],
|
|
|
|
|
steps_dist_mm.b = db * mm_per_step[B_AXIS],
|
|
|
|
|
steps_dist_mm.c = dc * mm_per_step[C_AXIS],
|
|
|
|
|
steps_dist_mm.i = di * mm_per_step[I_AXIS],
|
|
|
|
|
steps_dist_mm.j = dj * mm_per_step[J_AXIS],
|
|
|
|
|
steps_dist_mm.k = dk * mm_per_step[K_AXIS]
|
|
|
|
|
);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TERN_(HAS_EXTRUDERS, steps_dist_mm.e = esteps_float * steps_to_mm[E_AXIS_N(extruder)]);
|
|
|
|
|
TERN_(HAS_EXTRUDERS, steps_dist_mm.e = esteps_float * mm_per_step[E_AXIS_N(extruder)]);
|
|
|
|
|
|
|
|
|
|
TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e);
|
|
|
|
|
|
|
|
|
@ -2889,7 +2889,7 @@ bool Planner::buffer_segment(const abce_pos_t &abce
|
|
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
|
|
if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
|
|
|
|
|
position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]);
|
|
|
|
|
position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * mm_per_step[E_AXIS_N(last_extruder)]);
|
|
|
|
|
last_extruder = extruder;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
@ -3168,11 +3168,11 @@ void Planner::reset_acceleration_rates() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Recalculate 'position' and 'steps_to_mm'.
|
|
|
|
|
* Recalculate 'position' and 'mm_per_step'.
|
|
|
|
|
* Must be called whenever settings.axis_steps_per_mm changes!
|
|
|
|
|
*/
|
|
|
|
|
void Planner::refresh_positioning() {
|
|
|
|
|
LOOP_DISTINCT_AXES(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i];
|
|
|
|
|
LOOP_DISTINCT_AXES(i) mm_per_step[i] = 1.0f / settings.axis_steps_per_mm[i];
|
|
|
|
|
set_position_mm(current_position);
|
|
|
|
|
reset_acceleration_rates();
|
|
|
|
|
}
|
|
|
|
|