diff --git a/Marlin/Marlin.pde b/Marlin/Marlin.pde
index 6c2c6c87a4..4cbe570884 100644
--- a/Marlin/Marlin.pde
+++ b/Marlin/Marlin.pde
@@ -1139,8 +1139,8 @@ inline void get_coordinates()
inline void get_arc_coordinates()
{
get_coordinates();
- if(code_seen("I")) offset[0] = code_value();
- if(code_seen("J")) offset[1] = code_value();
+ if(code_seen('I')) offset[0] = code_value();
+ if(code_seen('J')) offset[1] = code_value();
}
void prepare_move()
@@ -1152,119 +1152,16 @@ void prepare_move()
}
void prepare_arc_move(char isclockwise) {
-#if 0
- if (radius_mode) {
- /*
- We need to calculate the center of the circle that has the designated radius and passes
- through both the current position and the target position. This method calculates the following
- set of equations where [x,y] is the vector from current to target position, d == magnitude of
- that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
- the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
- length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
- [i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
-
- d^2 == x^2 + y^2
- h^2 == r^2 - (d/2)^2
- i == x/2 - y/d*h
- j == y/2 + x/d*h
-
- O <- [i,j]
- - |
- r - |
- - |
- - | h
- - |
- [0,0] -> C -----------------+--------------- T <- [x,y]
- | <------ d/2 ---->|
-
- C - Current position
- T - Target position
- O - center of circle that pass through both C and T
- d - distance from C to T
- r - designated radius
- h - distance from center of CT to O
-
- Expanding the equations:
-
- d -> sqrt(x^2 + y^2)
- h -> sqrt(4 * r^2 - x^2 - y^2)/2
- i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
- j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
-
- Which can be written:
-
- i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
- j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
-
- Which we for size and speed reasons optimize to:
-
- h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
- i = (x - (y * h_x2_div_d))/2
- j = (y + (x * h_x2_div_d))/2
-
- */
-
- // Calculate the change in position along each selected axis
- double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
- double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
-
- clear_vector(offset);
- double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
- // If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
- // real CNC, and thus - for practical reasons - we will terminate promptly:
- if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
- // Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
- if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
-
- /* The counter clockwise circle lies to the left of the target direction. When offset is positive,
- the left hand circle will be generated - when it is negative the right hand circle is generated.
-
-
- T <-- Target position
-
- ^
- Clockwise circles with this center | Clockwise circles with this center will have
- will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
- \ | /
- center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
- |
- |
-
- C <-- Current position */
-
-
- // Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
- // even though it is advised against ever generating such circles in a single line of g-code. By
- // inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
- // travel and thus we get the unadvisably long arcs as prescribed.
- if (r < 0) {
- h_x2_div_d = -h_x2_div_d;
- r = -r; // Finished with r. Set to positive for mc_arc
- }
- // Complete the operation by calculating the actual center of the arc
- offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
- offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
-
- } else { // Offset mode specific computations
-#endif
- float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
-
-// }
-
- // Set clockwise/counter-clockwise sign for mc_arc computations
-// uint8_t isclockwise = false;
-// if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
-
-// }
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
- for(int ii=0; ii < NUM_AXIS; ii++) {
- current_position[ii] = destination[ii];
+ for(int i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
}
}
diff --git a/Marlin/motion_control.cpp b/Marlin/motion_control.cpp
index 75396143aa..c2fce52c71 100644
--- a/Marlin/motion_control.cpp
+++ b/Marlin/motion_control.cpp
@@ -19,12 +19,8 @@
along with Grbl. If not, see .
*/
-//#include "motion_control.h"
#include "Configuration.h"
#include "Marlin.h"
-//#include
-//#include
-//#include
#include "stepper.h"
#include "planner.h"
@@ -35,10 +31,10 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
{
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
- SERIAL_ECHOLN("mc_arc.");
float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1];
float linear_travel = target[axis_linear] - position[axis_linear];
+ float extruder_travel = target[E_AXIS] - position[E_AXIS];
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
float r_axis1 = -offset[axis_1];
float rt_axis0 = target[axis_0] - center_axis0;
@@ -60,6 +56,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
*/
float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments;
+ float extruder_per_segment = extruder_travel/segments;
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
@@ -90,7 +87,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
- float arc_target[3];
+ float arc_target[4];
float sin_Ti;
float cos_Ti;
float r_axisi;
@@ -99,6 +96,9 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
// Initialize the linear axis
arc_target[axis_linear] = position[axis_linear];
+
+ // Initialize the extruder axis
+ arc_target[E_AXIS] = position[E_AXIS];
for (i = 1; i