Merge pull request #6181 from thinkyhead/rc_ubl_further_fixes
Further adjustments to UBL code
This commit is contained in:
		
						commit
						541165e878
					
				| @ -120,7 +120,7 @@ script: | ||||
|   # Test a simple build of AUTO_BED_LEVELING_UBL | ||||
|   # | ||||
|   - restore_configs | ||||
|   - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL | ||||
|   - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL | ||||
|   - build_marlin | ||||
|   # | ||||
|   # Test a Sled Z Probe | ||||
|  | ||||
| @ -47,8 +47,8 @@ | ||||
|   #define OOZE_AMOUNT 0.3 | ||||
| 
 | ||||
|   #define SIZE_OF_INTERSECTION_CIRCLES 5 | ||||
|   #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle.  This number should be
 | ||||
|                                 // less than SIZE_OR_INTERSECTION_CIRCLES
 | ||||
|   #define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle.  This number should be
 | ||||
|                                // less than SIZE_OR_INTERSECTION_CIRCLES
 | ||||
| 
 | ||||
|   /**
 | ||||
|    *   Roxy's G26 Mesh Validation Tool | ||||
| @ -132,12 +132,12 @@ | ||||
|   void line_to_destination(float ); | ||||
|   void gcode_G28(); | ||||
|   void sync_plan_position_e(); | ||||
|   void un_retract_filament(); | ||||
|   void retract_filament(); | ||||
|   void un_retract_filament(float where[XYZE]); | ||||
|   void retract_filament(float where[XYZE]); | ||||
|   void look_for_lines_to_connect(); | ||||
|   bool parse_G26_parameters(); | ||||
|   void move_to(const float&, const float&, const float&, const float&) ; | ||||
|   void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez); | ||||
|   void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); | ||||
|   bool turn_on_heaters(); | ||||
|   bool prime_nozzle(); | ||||
|   void chirp_at_user(); | ||||
| @ -154,8 +154,6 @@ | ||||
| 
 | ||||
|   float valid_trig_angle(float); | ||||
|   mesh_index_pair find_closest_circle_to_print(float, float); | ||||
|   void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); | ||||
|   //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF);  /* needed for the old mesh_buffer_line() routine */
 | ||||
| 
 | ||||
|   static float extrusion_multiplier = EXTRUSION_MULTIPLIER, | ||||
|                retraction_multiplier = RETRACTION_MULTIPLIER, | ||||
| @ -269,7 +267,7 @@ | ||||
|         #endif | ||||
| 
 | ||||
|         // TODO: Change this to use `position_is_reachable`
 | ||||
|         if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) { | ||||
|         if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) { | ||||
|           SERIAL_ERROR_START; | ||||
|           SERIAL_ERRORLNPGM("Attempt to print off the bed."); | ||||
|           goto LEAVE; | ||||
| @ -359,7 +357,7 @@ | ||||
|     lcd_reset_alert_level(); | ||||
|     lcd_setstatuspgm(PSTR("Leaving G26")); | ||||
| 
 | ||||
|     retract_filament(); | ||||
|     retract_filament(destination); | ||||
|     destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; | ||||
| 
 | ||||
|     //debug_current_and_destination((char*)"ready to do Z-Raise.");
 | ||||
| @ -445,18 +443,12 @@ | ||||
|               // We found two circles that need a horizontal line to connect them
 | ||||
|               // Print it!
 | ||||
|               //
 | ||||
|               sx = ubl.mesh_index_to_xpos[i]; | ||||
|               sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
 | ||||
|               sy = ubl.mesh_index_to_ypos[j]; | ||||
|               sx = ubl.mesh_index_to_xpos[  i  ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
 | ||||
|               ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
 | ||||
| 
 | ||||
|               ex = ubl.mesh_index_to_xpos[i + 1]; | ||||
|               ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
 | ||||
|               ey = sy; | ||||
| 
 | ||||
|               sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);             // This keeps us from bumping the endstops
 | ||||
|               sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); | ||||
|               sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); | ||||
|               sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1); | ||||
|               ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); | ||||
|               ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); | ||||
| 
 | ||||
|               if (ubl.g26_debug_flag) { | ||||
|                 SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); | ||||
| @ -468,7 +460,7 @@ | ||||
|                 //debug_current_and_destination((char*)"Connecting horizontal line.");
 | ||||
|               } | ||||
| 
 | ||||
|               print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); | ||||
|               print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); | ||||
|               bit_set(horizontal_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | ||||
|             } | ||||
|           } | ||||
| @ -482,17 +474,11 @@ | ||||
|                 // We found two circles that need a vertical line to connect them
 | ||||
|                 // Print it!
 | ||||
|                 //
 | ||||
|                 sx = ubl.mesh_index_to_xpos[i]; | ||||
|                 sy = ubl.mesh_index_to_ypos[j]; | ||||
|                 sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
 | ||||
|                 sy = ubl.mesh_index_to_ypos[  j  ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
 | ||||
|                 ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
 | ||||
| 
 | ||||
|                 ex = sx; | ||||
|                 ey = ubl.mesh_index_to_ypos[j + 1]; | ||||
|                 ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
 | ||||
| 
 | ||||
|                 sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);             // This keeps us from bumping the endstops
 | ||||
|                 sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1); | ||||
|                 sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); | ||||
|                 ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); | ||||
|                 ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); | ||||
| 
 | ||||
|                 if (ubl.g26_debug_flag) { | ||||
| @ -504,8 +490,8 @@ | ||||
|                   SERIAL_EOL; | ||||
|                   debug_current_and_destination((char*)"Connecting vertical line."); | ||||
|                 } | ||||
|                 print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); | ||||
|                 bit_set( vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | ||||
|                 print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); | ||||
|                 bit_set(vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | ||||
|               } | ||||
|             } | ||||
|           } | ||||
| @ -533,7 +519,7 @@ | ||||
|       destination[Z_AXIS] = z;                          // We know the last_z==z or we wouldn't be in this block of code.
 | ||||
|       destination[E_AXIS] = current_position[E_AXIS]; | ||||
| 
 | ||||
|       ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); | ||||
|       ubl_line_to_destination(feed_value, 0); | ||||
| 
 | ||||
|       stepper.synchronize(); | ||||
|       set_destination_to_current(); | ||||
| @ -553,7 +539,7 @@ | ||||
| 
 | ||||
|     //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
 | ||||
| 
 | ||||
|     ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); | ||||
|     ubl_line_to_destination(feed_value, 0); | ||||
| 
 | ||||
|     //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
 | ||||
| 
 | ||||
| @ -562,18 +548,18 @@ | ||||
| 
 | ||||
|   } | ||||
| 
 | ||||
|   void retract_filament() { | ||||
|   void retract_filament(float where[XYZE]) { | ||||
|     if (!g26_retracted) { // Only retract if we are not already retracted!
 | ||||
|       g26_retracted = true; | ||||
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
 | ||||
|       move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); | ||||
|       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); | ||||
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
 | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   void un_retract_filament() { | ||||
|   void un_retract_filament(float where[XYZE]) { | ||||
|     if (g26_retracted) { // Only un-retract if we are retracted.
 | ||||
|       move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); | ||||
|       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); | ||||
|       g26_retracted = false; | ||||
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
 | ||||
|     } | ||||
| @ -594,7 +580,7 @@ | ||||
|    * segment of a 'circle'.   The time this requires is very short and is easily saved by the other | ||||
|    * cases where the optimization comes into play. | ||||
|    */ | ||||
|   void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) { | ||||
|   void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { | ||||
|     const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual line segment
 | ||||
|                 dy_s = current_position[Y_AXIS] - sy, | ||||
|                 dist_start = HYPOT2(dx_s, dy_s),        // We don't need to do a sqrt(), we can compare the distance^2
 | ||||
| @ -603,31 +589,26 @@ | ||||
|                 dy_e = current_position[Y_AXIS] - ey, | ||||
|                 dist_end = HYPOT2(dx_e, dy_e), | ||||
| 
 | ||||
|                 dx = ex - sx, | ||||
|                 dy = ey - sy, | ||||
|                 line_length = HYPOT(dx, dy); | ||||
|                 line_length = HYPOT(ex - sx, ey - sy); | ||||
| 
 | ||||
|     // If the end point of the line is closer to the nozzle, we are going to
 | ||||
|     // flip the direction of this line.   We will print it from the end to the start.
 | ||||
|     // On very small lines we don't do the optimization because it just isn't worth it.
 | ||||
|     //
 | ||||
|     // If the end point of the line is closer to the nozzle, flip the direction,
 | ||||
|     // moving from the end to the start. On very small lines the optimization isn't worth it.
 | ||||
|     if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { | ||||
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
 | ||||
|       print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); | ||||
|       return; | ||||
|       return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); | ||||
|     } | ||||
| 
 | ||||
|     // Now decide if we should retract.
 | ||||
|     // Decide whether to retract.
 | ||||
| 
 | ||||
|     if (dist_start > 2.0) { | ||||
|       retract_filament(); | ||||
|       retract_filament(destination); | ||||
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  filament retracted.");
 | ||||
|     } | ||||
|     move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
 | ||||
| 
 | ||||
|     const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; | ||||
| 
 | ||||
|     un_retract_filament(); | ||||
|     un_retract_filament(destination); | ||||
| 
 | ||||
|     //if (ubl.g26_debug_flag) {
 | ||||
|     //  SERIAL_ECHOLNPGM("  doing printing move.");
 | ||||
| @ -657,7 +638,7 @@ | ||||
| 
 | ||||
|     if (code_seen('B')) { | ||||
|       bed_temp = code_value_float(); | ||||
|       if (bed_temp < 15.0 || bed_temp > 140.0) { | ||||
|       if (!WITHIN(bed_temp, 15.0, 140.0)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -667,7 +648,7 @@ | ||||
| 
 | ||||
|     if (code_seen('L')) { | ||||
|       layer_height = code_value_float(); | ||||
|       if (layer_height < 0.0 || layer_height > 2.0) { | ||||
|       if (!WITHIN(layer_height, 0.0, 2.0)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -676,7 +657,7 @@ | ||||
|     if (code_seen('Q')) { | ||||
|       if (code_has_value()) { | ||||
|         retraction_multiplier = code_value_float(); | ||||
|         if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) { | ||||
|         if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { | ||||
|           SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); | ||||
|           return UBL_ERR; | ||||
|         } | ||||
| @ -689,7 +670,7 @@ | ||||
| 
 | ||||
|     if (code_seen('N')) { | ||||
|       nozzle = code_value_float(); | ||||
|       if (nozzle < 0.1 || nozzle > 1.0) { | ||||
|       if (!WITHIN(nozzle, 0.1, 1.0)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -706,7 +687,7 @@ | ||||
|       else { | ||||
|         prime_flag++; | ||||
|         prime_length = code_value_float(); | ||||
|         if (prime_length < 0.0 || prime_length > 25.0) { | ||||
|         if (!WITHIN(prime_length, 0.0, 25.0)) { | ||||
|           SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); | ||||
|           return UBL_ERR; | ||||
|         } | ||||
| @ -715,7 +696,7 @@ | ||||
| 
 | ||||
|     if (code_seen('F')) { | ||||
|       filament_diameter = code_value_float(); | ||||
|       if (filament_diameter < 1.0 || filament_diameter > 4.0) { | ||||
|       if (!WITHIN(filament_diameter, 1.0, 4.0)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -728,7 +709,7 @@ | ||||
| 
 | ||||
|     if (code_seen('H')) { | ||||
|       hotend_temp = code_value_float(); | ||||
|       if (hotend_temp < 165.0 || hotend_temp > 280.0) { | ||||
|       if (!WITHIN(hotend_temp, 165.0, 280.0)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -744,7 +725,7 @@ | ||||
| 
 | ||||
|     if (code_seen('X')) { | ||||
|       x_pos = code_value_float(); | ||||
|       if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) { | ||||
|       if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -753,7 +734,7 @@ | ||||
| 
 | ||||
|     if (code_seen('Y')) { | ||||
|       y_pos = code_value_float(); | ||||
|       if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) { | ||||
|       if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) { | ||||
|         SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible."); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -814,6 +795,7 @@ | ||||
|       lcd_setstatuspgm(PSTR("")); | ||||
|       lcd_quick_feedback(); | ||||
|     #endif | ||||
| 
 | ||||
|     return UBL_OK; | ||||
|   } | ||||
| 
 | ||||
| @ -832,9 +814,8 @@ | ||||
| 
 | ||||
|       set_destination_to_current(); | ||||
| 
 | ||||
|       un_retract_filament();    // Lets make sure the G26 command doesn't think the filament is
 | ||||
|                                 // retracted().  We are here because we want to prime the nozzle.
 | ||||
|                                 // So let's just unretract just to be sure.
 | ||||
|       un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
 | ||||
| 
 | ||||
|       while (!ubl_lcd_clicked()) { | ||||
|         chirp_at_user(); | ||||
|         destination[E_AXIS] += 0.25; | ||||
| @ -842,10 +823,7 @@ | ||||
|           Total_Prime += 0.25; | ||||
|           if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; | ||||
|         #endif | ||||
|         ubl_line_to_destination( | ||||
|           destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], | ||||
|           planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 | ||||
|         ); | ||||
|         ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); | ||||
| 
 | ||||
|         stepper.synchronize();    // Without this synchronize, the purge is more consistent,
 | ||||
|                                   // but because the planner has a buffer, we won't be able
 | ||||
| @ -874,13 +852,10 @@ | ||||
|       #endif | ||||
|       set_destination_to_current(); | ||||
|       destination[E_AXIS] += prime_length; | ||||
|       ubl_line_to_destination( | ||||
|         destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], | ||||
|         planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 | ||||
|       ); | ||||
|       ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); | ||||
|       stepper.synchronize(); | ||||
|       set_destination_to_current(); | ||||
|       retract_filament(); | ||||
|       retract_filament(destination); | ||||
|     } | ||||
| 
 | ||||
|     return UBL_OK; | ||||
|  | ||||
| @ -244,7 +244,6 @@ inline bool IsRunning() { return  Running; } | ||||
| inline bool IsStopped() { return !Running; } | ||||
| 
 | ||||
| bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); //put a single ASCII command at the end of the current buffer or return false when it is full
 | ||||
| void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return when the command has been enqueued
 | ||||
| void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
 | ||||
| void clear_command_queue(); | ||||
| 
 | ||||
|  | ||||
| @ -896,10 +896,6 @@ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { | ||||
|   return false; | ||||
| } | ||||
| 
 | ||||
| void enqueue_and_echo_command_now(const char* cmd) { | ||||
|   while (!enqueue_and_echo_command(cmd)) idle(); | ||||
| } | ||||
| 
 | ||||
| void setup_killpin() { | ||||
|   #if HAS_KILL | ||||
|     SET_INPUT_PULLUP(KILL_PIN); | ||||
| @ -2237,7 +2233,7 @@ static void clean_up_after_endstop_or_probe_move() { | ||||
|         SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]); | ||||
|       } | ||||
|     #endif | ||||
|     return current_position[Z_AXIS]; | ||||
|     return current_position[Z_AXIS] + zprobe_zoffset; | ||||
|   } | ||||
| 
 | ||||
|   //
 | ||||
| @ -2291,7 +2287,7 @@ static void clean_up_after_endstop_or_probe_move() { | ||||
|       SERIAL_PROTOCOLPGM(" Y: "); | ||||
|       SERIAL_PROTOCOL_F(y, 3); | ||||
|       SERIAL_PROTOCOLPGM(" Z: "); | ||||
|       SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3); | ||||
|       SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3); | ||||
|       SERIAL_EOL; | ||||
|     } | ||||
| 
 | ||||
| @ -2569,7 +2565,7 @@ static void clean_up_after_endstop_or_probe_move() { | ||||
|           ep = ABL_GRID_MAX_POINTS_X - 1; | ||||
|           ip = ABL_GRID_MAX_POINTS_X - 2; | ||||
|         } | ||||
|         if (y > 0 && y < ABL_TEMP_POINTS_Y - 1) | ||||
|         if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2)) | ||||
|           return LINEAR_EXTRAPOLATION( | ||||
|             bed_level_grid[ep][y - 1], | ||||
|             bed_level_grid[ip][y - 1] | ||||
| @ -2585,7 +2581,7 @@ static void clean_up_after_endstop_or_probe_move() { | ||||
|           ep = ABL_GRID_MAX_POINTS_Y - 1; | ||||
|           ip = ABL_GRID_MAX_POINTS_Y - 2; | ||||
|         } | ||||
|         if (x > 0 && x < ABL_TEMP_POINTS_X - 1) | ||||
|         if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2)) | ||||
|           return LINEAR_EXTRAPOLATION( | ||||
|             bed_level_grid[x - 1][ep], | ||||
|             bed_level_grid[x - 1][ip] | ||||
| @ -3028,9 +3024,9 @@ bool position_is_reachable(float target[XYZ] | ||||
|     return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS)); | ||||
|   #else | ||||
|     const float dz = RAW_Z_POSITION(target[Z_AXIS]); | ||||
|     return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001 | ||||
|         && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001 | ||||
|         && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001; | ||||
|     return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001) | ||||
|         && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001) | ||||
|         && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001); | ||||
|   #endif | ||||
| } | ||||
| 
 | ||||
| @ -3788,13 +3784,13 @@ inline void gcode_G28() { | ||||
|    */ | ||||
|   inline void gcode_G29() { | ||||
| 
 | ||||
|     static int probe_index = -1; | ||||
|     static int mbl_probe_index = -1; | ||||
|     #if HAS_SOFTWARE_ENDSTOPS | ||||
|       static bool enable_soft_endstops; | ||||
|     #endif | ||||
| 
 | ||||
|     const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport; | ||||
|     if (state < 0 || state > 5) { | ||||
|     if (!WITHIN(state, 0, 5)) { | ||||
|       SERIAL_PROTOCOLLNPGM("S out of range (0-5)."); | ||||
|       return; | ||||
|     } | ||||
| @ -3813,17 +3809,17 @@ inline void gcode_G28() { | ||||
| 
 | ||||
|       case MeshStart: | ||||
|         mbl.reset(); | ||||
|         probe_index = 0; | ||||
|         mbl_probe_index = 0; | ||||
|         enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); | ||||
|         break; | ||||
| 
 | ||||
|       case MeshNext: | ||||
|         if (probe_index < 0) { | ||||
|         if (mbl_probe_index < 0) { | ||||
|           SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); | ||||
|           return; | ||||
|         } | ||||
|         // For each G29 S2...
 | ||||
|         if (probe_index == 0) { | ||||
|         if (mbl_probe_index == 0) { | ||||
|           #if HAS_SOFTWARE_ENDSTOPS | ||||
|             // For the initial G29 S2 save software endstop state
 | ||||
|             enable_soft_endstops = soft_endstops_enabled; | ||||
| @ -3831,14 +3827,14 @@ inline void gcode_G28() { | ||||
|         } | ||||
|         else { | ||||
|           // For G29 S2 after adjusting Z.
 | ||||
|           mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]); | ||||
|           mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]); | ||||
|           #if HAS_SOFTWARE_ENDSTOPS | ||||
|             soft_endstops_enabled = enable_soft_endstops; | ||||
|           #endif | ||||
|         } | ||||
|         // If there's another point to sample, move there with optional lift.
 | ||||
|         if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { | ||||
|           mbl.zigzag(probe_index, px, py); | ||||
|         if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { | ||||
|           mbl.zigzag(mbl_probe_index, px, py); | ||||
|           _mbl_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]); | ||||
| 
 | ||||
|           #if HAS_SOFTWARE_ENDSTOPS | ||||
| @ -3847,7 +3843,7 @@ inline void gcode_G28() { | ||||
|             soft_endstops_enabled = false; | ||||
|           #endif | ||||
| 
 | ||||
|           probe_index++; | ||||
|           mbl_probe_index++; | ||||
|         } | ||||
|         else { | ||||
|           // One last "return to the bed" (as originally coded) at completion
 | ||||
| @ -3857,7 +3853,7 @@ inline void gcode_G28() { | ||||
| 
 | ||||
|           // After recording the last point, activate the mbl and home
 | ||||
|           SERIAL_PROTOCOLLNPGM("Mesh probing done."); | ||||
|           probe_index = -1; | ||||
|           mbl_probe_index = -1; | ||||
|           mbl.set_has_mesh(true); | ||||
|           mbl.set_reactivate(true); | ||||
|           enqueue_and_echo_commands_P(PSTR("G28")); | ||||
| @ -3869,7 +3865,7 @@ inline void gcode_G28() { | ||||
|       case MeshSet: | ||||
|         if (code_seen('X')) { | ||||
|           px = code_value_int() - 1; | ||||
|           if (px < 0 || px >= MESH_NUM_X_POINTS) { | ||||
|           if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) { | ||||
|             SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ")."); | ||||
|             return; | ||||
|           } | ||||
| @ -3881,7 +3877,7 @@ inline void gcode_G28() { | ||||
| 
 | ||||
|         if (code_seen('Y')) { | ||||
|           py = code_value_int() - 1; | ||||
|           if (py < 0 || py >= MESH_NUM_Y_POINTS) { | ||||
|           if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) { | ||||
|             SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ")."); | ||||
|             return; | ||||
|           } | ||||
| @ -4412,7 +4408,7 @@ inline void gcode_G28() { | ||||
|         if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) | ||||
|           && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) | ||||
|         ) { | ||||
|           float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset)); | ||||
|           float simple_z = current_position[Z_AXIS] - measured_z; | ||||
|           #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|             if (DEBUGGING(LEVELING)) { | ||||
|               SERIAL_ECHOPAIR("Z from Probe:", simple_z); | ||||
| @ -4503,11 +4499,11 @@ inline void gcode_G28() { | ||||
|     float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1); | ||||
| 
 | ||||
|     SERIAL_PROTOCOLPGM("Bed X: "); | ||||
|     SERIAL_PROTOCOL(X_probe_location + 0.0001); | ||||
|     SERIAL_PROTOCOL(FIXFLOAT(X_probe_location)); | ||||
|     SERIAL_PROTOCOLPGM(" Y: "); | ||||
|     SERIAL_PROTOCOL(Y_probe_location + 0.0001); | ||||
|     SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location)); | ||||
|     SERIAL_PROTOCOLPGM(" Z: "); | ||||
|     SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001); | ||||
|     SERIAL_PROTOCOLLN(FIXFLOAT(measured_z)); | ||||
| 
 | ||||
|     clean_up_after_endstop_or_probe_move(); | ||||
| 
 | ||||
| @ -4971,7 +4967,7 @@ inline void gcode_M42() { | ||||
|   if (!code_seen('S')) return; | ||||
| 
 | ||||
|   int pin_status = code_value_int(); | ||||
|   if (pin_status < 0 || pin_status > 255) return; | ||||
|   if (!WITHIN(pin_status, 0, 255)) return; | ||||
| 
 | ||||
|   int pin_number = code_seen('P') ? code_value_int() : LED_PIN; | ||||
|   if (pin_number < 0) return; | ||||
| @ -5115,7 +5111,7 @@ inline void gcode_M42() { | ||||
|     if (axis_unhomed_error(true, true, true)) return; | ||||
| 
 | ||||
|     int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; | ||||
|     if (verbose_level < 0 || verbose_level > 4) { | ||||
|     if (!WITHIN(verbose_level, 0, 4)) { | ||||
|       SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4)."); | ||||
|       return; | ||||
|     } | ||||
| @ -5124,7 +5120,7 @@ inline void gcode_M42() { | ||||
|       SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test"); | ||||
| 
 | ||||
|     int8_t n_samples = code_seen('P') ? code_value_byte() : 10; | ||||
|     if (n_samples < 4 || n_samples > 50) { | ||||
|     if (!WITHIN(n_samples, 4, 50)) { | ||||
|       SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50)."); | ||||
|       return; | ||||
|     } | ||||
| @ -5136,7 +5132,7 @@ inline void gcode_M42() { | ||||
| 
 | ||||
|     float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER; | ||||
|     #if DISABLED(DELTA) | ||||
|       if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) { | ||||
|       if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) { | ||||
|         out_of_range_error(PSTR("X")); | ||||
|         return; | ||||
|       } | ||||
| @ -5144,7 +5140,7 @@ inline void gcode_M42() { | ||||
| 
 | ||||
|     float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER; | ||||
|     #if DISABLED(DELTA) | ||||
|       if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) { | ||||
|       if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) { | ||||
|         out_of_range_error(PSTR("Y")); | ||||
|         return; | ||||
|       } | ||||
| @ -6795,7 +6791,7 @@ inline void gcode_M226() { | ||||
|   inline void gcode_M280() { | ||||
|     if (!code_seen('P')) return; | ||||
|     int servo_index = code_value_int(); | ||||
|     if (servo_index >= 0 && servo_index < NUM_SERVOS) { | ||||
|     if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) { | ||||
|       if (code_seen('S')) | ||||
|         MOVE_SERVO(servo_index, code_value_int()); | ||||
|       else { | ||||
| @ -7002,7 +6998,7 @@ inline void gcode_M303() { | ||||
| 
 | ||||
|     float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0); | ||||
| 
 | ||||
|     if (e >= 0 && e < HOTENDS) | ||||
|     if (WITHIN(e, 0, HOTENDS - 1)) | ||||
|       target_extruder = e; | ||||
| 
 | ||||
|     KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
 | ||||
| @ -7223,7 +7219,7 @@ void quickstop_stepper() { | ||||
|       if (code_seen('L')) { | ||||
|         const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; | ||||
|         const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); | ||||
|         if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { | ||||
|         if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { | ||||
|           SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); | ||||
|           return; | ||||
|         } | ||||
| @ -7316,7 +7312,7 @@ void quickstop_stepper() { | ||||
|       } | ||||
|     } | ||||
|     else if (hasI && hasJ && hasZ) { | ||||
|       if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS) | ||||
|       if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) | ||||
|         mbl.set_z(px, py, z); | ||||
|       else { | ||||
|         SERIAL_ERROR_START; | ||||
| @ -7345,7 +7341,7 @@ void quickstop_stepper() { | ||||
|     if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS); | ||||
| 
 | ||||
|     if (hasI && hasJ && hasZ) { | ||||
|       if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) { | ||||
|       if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) { | ||||
|         bed_level_grid[px][py] = z; | ||||
|         #if ENABLED(ABL_BILINEAR_SUBDIVISION) | ||||
|           bed_level_virt_interpolate(); | ||||
| @ -7383,7 +7379,7 @@ void quickstop_stepper() { | ||||
|       if (axis_homed[i]) { | ||||
|         float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0, | ||||
|               diff = current_position[i] - LOGICAL_POSITION(base, i); | ||||
|         if (diff > -20 && diff < 20) { | ||||
|         if (WITHIN(diff, -20, 20)) { | ||||
|           set_home_offset((AxisEnum)i, home_offset[i] - diff); | ||||
|         } | ||||
|         else { | ||||
| @ -7457,7 +7453,7 @@ inline void gcode_M503() { | ||||
| 
 | ||||
|     if (code_seen('Z')) { | ||||
|       float value = code_value_axis_units(Z_AXIS); | ||||
|       if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) { | ||||
|       if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { | ||||
| 
 | ||||
|         #if ENABLED(AUTO_BED_LEVELING_BILINEAR) | ||||
|           // Correct bilinear grid for new probe offset
 | ||||
| @ -9905,11 +9901,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { | ||||
|       #elif ENABLED(AUTO_BED_LEVELING_UBL) | ||||
|         if (ubl.state.active) { | ||||
| 
 | ||||
| //        ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
 | ||||
| 
 | ||||
|           ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], | ||||
| //                      (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
 | ||||
|                       MMS_SCALED(feedrate_mm_s), active_extruder); | ||||
|           ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder); | ||||
| 
 | ||||
|           return false; | ||||
|         } | ||||
|  | ||||
| @ -540,13 +540,13 @@ static_assert(1 >= 0 | ||||
|  * Make sure Z_SAFE_HOMING point is reachable | ||||
|  */ | ||||
| #if ENABLED(Z_SAFE_HOMING) | ||||
|   #if Z_SAFE_HOMING_X_POINT < MIN_PROBE_X || Z_SAFE_HOMING_X_POINT > MAX_PROBE_X | ||||
|   #if !WITHIN(Z_SAFE_HOMING_X_POINT, MIN_PROBE_X, MAX_PROBE_X) | ||||
|     #if HAS_BED_PROBE | ||||
|       #error "Z_SAFE_HOMING_X_POINT can't be reached by the Z probe." | ||||
|     #else | ||||
|       #error "Z_SAFE_HOMING_X_POINT can't be reached by the nozzle." | ||||
|     #endif | ||||
|   #elif Z_SAFE_HOMING_Y_POINT < MIN_PROBE_Y || Z_SAFE_HOMING_Y_POINT > MAX_PROBE_Y | ||||
|   #elif !WITHIN(Z_SAFE_HOMING_Y_POINT, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|     #if HAS_BED_PROBE | ||||
|       #error "Z_SAFE_HOMING_Y_POINT can't be reached by the Z probe." | ||||
|     #else | ||||
| @ -598,33 +598,33 @@ static_assert(1 >= 0 | ||||
|   #elif ENABLED(AUTO_BED_LEVELING_UBL) | ||||
|     #if DISABLED(EEPROM_SETTINGS) | ||||
|       #error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration." | ||||
|     #elif UBL_MESH_NUM_X_POINTS < 3 || UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS < 3 || UBL_MESH_NUM_Y_POINTS > 15 | ||||
|     #elif !WITHIN(UBL_MESH_NUM_X_POINTS, 3, 15) || !WITHIN(UBL_MESH_NUM_Y_POINTS, 3, 15) | ||||
|       #error "UBL_MESH_NUM_[XY]_POINTS must be a whole number between 3 and 15." | ||||
|     #elif UBL_PROBE_PT_1_X < MIN_PROBE_X || UBL_PROBE_PT_1_X > MAX_PROBE_X | ||||
|     #elif !WITHIN(UBL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given UBL_PROBE_PT_1_X can't be reached by the Z probe." | ||||
|     #elif UBL_PROBE_PT_2_X < MIN_PROBE_X || UBL_PROBE_PT_2_X > MAX_PROBE_X | ||||
|     #elif !WITHIN(UBL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given UBL_PROBE_PT_2_X can't be reached by the Z probe." | ||||
|     #elif UBL_PROBE_PT_3_X < MIN_PROBE_X || UBL_PROBE_PT_3_X > MAX_PROBE_X | ||||
|     #elif !WITHIN(UBL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given UBL_PROBE_PT_3_X can't be reached by the Z probe." | ||||
|     #elif UBL_PROBE_PT_1_Y < MIN_PROBE_Y || UBL_PROBE_PT_1_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(UBL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given UBL_PROBE_PT_1_Y can't be reached by the Z probe." | ||||
|     #elif UBL_PROBE_PT_2_Y < MIN_PROBE_Y || UBL_PROBE_PT_2_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(UBL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given UBL_PROBE_PT_2_Y can't be reached by the Z probe." | ||||
|     #elif UBL_PROBE_PT_3_Y < MIN_PROBE_Y || UBL_PROBE_PT_3_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(UBL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given UBL_PROBE_PT_3_Y can't be reached by the Z probe." | ||||
|     #endif | ||||
|   #else // AUTO_BED_LEVELING_3POINT
 | ||||
|     #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X | ||||
|     #if !WITHIN(ABL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe." | ||||
|     #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X | ||||
|     #elif !WITHIN(ABL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe." | ||||
|     #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X | ||||
|     #elif !WITHIN(ABL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X) | ||||
|       #error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe." | ||||
|     #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(ABL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe." | ||||
|     #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(ABL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe." | ||||
|     #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y | ||||
|     #elif !WITHIN(ABL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y) | ||||
|       #error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe." | ||||
|     #endif | ||||
|   #endif // AUTO_BED_LEVELING_3POINT
 | ||||
| @ -862,11 +862,11 @@ static_assert(1 >= 0 | ||||
| /**
 | ||||
|  * Endstops | ||||
|  */ | ||||
| #if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _XMAX_ && Z2_USE_ENDSTOP <= _XMIN_) | ||||
| #if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _XMAX_, _XMIN_)) | ||||
|  #error "You must enable USE_XMIN_PLUG or USE_XMAX_PLUG." | ||||
| #elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _YMAX_ && Z2_USE_ENDSTOP <= _YMIN_) | ||||
| #elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _YMAX_, _YMIN_)) | ||||
|  #error "You must enable USE_YMIN_PLUG or USE_YMAX_PLUG." | ||||
| #elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _ZMAX_ && Z2_USE_ENDSTOP <= _ZMIN_) | ||||
| #elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _ZMAX_, _ZMIN_)) | ||||
|  #error "You must enable USE_ZMIN_PLUG or USE_ZMAX_PLUG." | ||||
| #elif ENABLED(Z_DUAL_ENDSTOPS) | ||||
|   #if !Z2_USE_ENDSTOP | ||||
|  | ||||
							
								
								
									
										76
									
								
								Marlin/UBL.h
									
									
									
									
									
								
							
							
						
						
									
										76
									
								
								Marlin/UBL.h
									
									
									
									
									
								
							| @ -43,7 +43,7 @@ | ||||
|     bool ubl_lcd_clicked(); | ||||
|     void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); | ||||
|     void debug_current_and_destination(char *title); | ||||
|     void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); | ||||
|     void ubl_line_to_destination(const float&, uint8_t); | ||||
|     void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); | ||||
|     vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&); | ||||
|     float measure_business_card_thickness(const float&); | ||||
| @ -169,12 +169,12 @@ | ||||
| 
 | ||||
|         static int8_t find_closest_x_index(const float &x) { | ||||
|           const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); | ||||
|           return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; | ||||
|           return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1; | ||||
|         } | ||||
| 
 | ||||
|         static int8_t find_closest_y_index(const float &y) { | ||||
|           const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); | ||||
|           return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; | ||||
|           return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1; | ||||
|         } | ||||
| 
 | ||||
|         /**
 | ||||
| @ -193,22 +193,16 @@ | ||||
|          *  multiplications. | ||||
|          */ | ||||
|         static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|           const float delta_z = (z2 - z1), | ||||
|                       delta_a = (a0 - a1) / (a2 - a1); | ||||
|           return z1 + delta_a * delta_z; | ||||
|           return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); | ||||
|         } | ||||
| 
 | ||||
|         /**
 | ||||
|          * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes | ||||
|          * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory | ||||
|          * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling | ||||
|          * the get_z_correction_along_vertical_mesh_line_at_specific_X routine  will already have | ||||
|          * the X index of the x0 intersection available and we don't want to perform any extra floating | ||||
|          * point operations. | ||||
|          * z_correction_for_x_on_horizontal_mesh_line is an optimization for | ||||
|          * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). | ||||
|          */ | ||||
|         static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { | ||||
|           if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); | ||||
|         static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { | ||||
|           if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { | ||||
|             SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); | ||||
|             SERIAL_ECHOPAIR(",x1_i=", x1_i); | ||||
|             SERIAL_ECHOPAIR(",yi=", yi); | ||||
|             SERIAL_CHAR(')'); | ||||
| @ -216,20 +210,18 @@ | ||||
|             return NAN; | ||||
|           } | ||||
| 
 | ||||
|           const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), | ||||
|                       z1 = z_values[x1_i][yi], | ||||
|                       z2 = z_values[x1_i + 1][yi], | ||||
|                       dz = (z2 - z1); | ||||
|           const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), | ||||
|                       z1 = z_values[x1_i][yi]; | ||||
| 
 | ||||
|           return z1 + xratio * dz; | ||||
|           return z1 + xratio * (z_values[x1_i + 1][yi] - z1); | ||||
|         } | ||||
| 
 | ||||
|         //
 | ||||
|         // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
 | ||||
|         // See comments above for z_correction_for_x_on_horizontal_mesh_line
 | ||||
|         //
 | ||||
|         static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { | ||||
|           if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); | ||||
|         static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { | ||||
|           if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) { | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); | ||||
|             SERIAL_ECHOPAIR(", x1_i=", xi); | ||||
|             SERIAL_ECHOPAIR(", yi=", y1_i); | ||||
|             SERIAL_CHAR(')'); | ||||
| @ -237,12 +229,10 @@ | ||||
|             return NAN; | ||||
|           } | ||||
| 
 | ||||
|           const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), | ||||
|                       z1 = z_values[xi][y1_i], | ||||
|                       z2 = z_values[xi][y1_i + 1], | ||||
|                       dz = (z2 - z1); | ||||
|           const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), | ||||
|                       z1 = z_values[xi][y1_i]; | ||||
| 
 | ||||
|           return z1 + yratio * dz; | ||||
|           return z1 + yratio * (z_values[xi][y1_i + 1] - z1); | ||||
|         } | ||||
| 
 | ||||
|         /**
 | ||||
| @ -251,14 +241,14 @@ | ||||
|          * Z-Height at both ends. Then it does a linear interpolation of these heights based | ||||
|          * on the Y position within the cell. | ||||
|          */ | ||||
|         static float get_z_correction(const float &x0, const float &y0) { | ||||
|           const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), | ||||
|                        cy = get_cell_index_y(RAW_Y_POSITION(y0)); | ||||
|         static float get_z_correction(const float &lx0, const float &ly0) { | ||||
|           const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), | ||||
|                        cy = get_cell_index_y(RAW_Y_POSITION(ly0)); | ||||
| 
 | ||||
|           if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { | ||||
|           if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) { | ||||
| 
 | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); | ||||
|             SERIAL_ECHOPAIR(", y0=", y0); | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); | ||||
|             SERIAL_ECHOPAIR(", ly0=", ly0); | ||||
|             SERIAL_CHAR(')'); | ||||
|             SERIAL_EOL; | ||||
| 
 | ||||
| @ -269,21 +259,21 @@ | ||||
|             return 0.0; // this used to return state.z_offset
 | ||||
|           } | ||||
| 
 | ||||
|           const float z1 = calc_z0(RAW_X_POSITION(x0), | ||||
|           const float z1 = calc_z0(RAW_X_POSITION(lx0), | ||||
|                         mesh_index_to_xpos[cx], z_values[cx][cy], | ||||
|                         mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), | ||||
|                       z2 = calc_z0(RAW_X_POSITION(x0), | ||||
|                       z2 = calc_z0(RAW_X_POSITION(lx0), | ||||
|                         mesh_index_to_xpos[cx], z_values[cx][cy + 1], | ||||
|                         mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); | ||||
|                 float z0 = calc_z0(RAW_Y_POSITION(y0), | ||||
|                 float z0 = calc_z0(RAW_Y_POSITION(ly0), | ||||
|                     mesh_index_to_ypos[cy], z1, | ||||
|                     mesh_index_to_ypos[cy + 1], z2); | ||||
| 
 | ||||
|           #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|             if (DEBUGGING(MESH_ADJUST)) { | ||||
|               SERIAL_ECHOPAIR(" raw get_z_correction(", x0); | ||||
|               SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); | ||||
|               SERIAL_CHAR(',') | ||||
|               SERIAL_ECHO(y0); | ||||
|               SERIAL_ECHO(ly0); | ||||
|               SERIAL_ECHOPGM(") = "); | ||||
|               SERIAL_ECHO_F(z0, 6); | ||||
|             } | ||||
| @ -305,9 +295,9 @@ | ||||
| 
 | ||||
|             #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|               if (DEBUGGING(MESH_ADJUST)) { | ||||
|                 SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", x0); | ||||
|                 SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", lx0); | ||||
|                 SERIAL_CHAR(','); | ||||
|                 SERIAL_ECHO(y0); | ||||
|                 SERIAL_ECHO(ly0); | ||||
|                 SERIAL_CHAR(')'); | ||||
|                 SERIAL_EOL; | ||||
|               } | ||||
| @ -327,7 +317,7 @@ | ||||
|          */ | ||||
|         #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
| 
 | ||||
|           FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { | ||||
|           static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { | ||||
|             const float rz = RAW_Z_POSITION(lz); | ||||
|             if (last_specified_z != rz) { | ||||
|               last_specified_z = rz; | ||||
|  | ||||
| @ -118,7 +118,7 @@ | ||||
|       return; | ||||
|     } | ||||
| 
 | ||||
|     if (m < 0 || m >= j || eeprom_start <= 0) { | ||||
|     if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) { | ||||
|       SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); | ||||
|       return; | ||||
|     } | ||||
| @ -133,7 +133,7 @@ | ||||
|   void unified_bed_leveling::store_mesh(const int16_t m) { | ||||
|     int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); | ||||
| 
 | ||||
|     if (m < 0 || m >= j || eeprom_start <= 0) { | ||||
|     if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) { | ||||
|       SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); | ||||
|       SERIAL_PROTOCOL(m); | ||||
|       SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); | ||||
| @ -203,7 +203,7 @@ | ||||
| 
 | ||||
|         const float f = z_values[i][j]; | ||||
|         if (isnan(f)) { | ||||
|           serialprintPGM(map0 ? PSTR("    .    ") : PSTR("NAN")); | ||||
|           serialprintPGM(map0 ? PSTR("   .  ") : PSTR("NAN")); | ||||
|         } | ||||
|         else { | ||||
|           // if we don't do this, the columns won't line up nicely
 | ||||
|  | ||||
| @ -49,7 +49,6 @@ | ||||
|   extern bool code_value_bool(); | ||||
|   extern bool code_has_value(); | ||||
|   extern float probe_pt(float x, float y, bool, int); | ||||
|   extern float zprobe_zoffset; | ||||
|   extern bool set_probe_deployed(bool); | ||||
|   #define DEPLOY_PROBE() set_probe_deployed(true) | ||||
|   #define STOW_PROBE() set_probe_deployed(false) | ||||
| @ -342,7 +341,7 @@ | ||||
|     if (code_seen('Q')) { | ||||
| 
 | ||||
|       const int test_pattern = code_has_value() ? code_value_int() : -1; | ||||
|       if (test_pattern < 0 || test_pattern > 2) { | ||||
|       if (!WITHIN(test_pattern, 0, 2)) { | ||||
|         SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n"); | ||||
|         return; | ||||
|       } | ||||
| @ -375,7 +374,7 @@ | ||||
|     /*
 | ||||
|     if (code_seen('U')) { | ||||
|       unlevel_value = code_value_int(); | ||||
|       //if (unlevel_value < 0 || unlevel_value > 7) {
 | ||||
|       //if (!WITHIN(unlevel_value, 0, 7)) {
 | ||||
|       //  SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
 | ||||
|       //  return;
 | ||||
|       //}
 | ||||
| @ -384,7 +383,7 @@ | ||||
| 
 | ||||
|     if (code_seen('P')) { | ||||
|       phase_value = code_value_int(); | ||||
|       if (phase_value < 0 || phase_value > 7) { | ||||
|       if (!WITHIN(phase_value, 0, 7)) { | ||||
|         SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); | ||||
|         return; | ||||
|       } | ||||
| @ -516,16 +515,23 @@ | ||||
|     } | ||||
| 
 | ||||
|     if (code_seen('T')) { | ||||
|       float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, | ||||
|             z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, | ||||
|             z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true  /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; | ||||
|       const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X), | ||||
|                   lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X), | ||||
|                   lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X), | ||||
|                   ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y), | ||||
|                   ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y), | ||||
|                   ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y); | ||||
| 
 | ||||
|       float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level), | ||||
|             z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level), | ||||
|             z3 = probe_pt(lx3, ly3, true  /*Stow Flag*/, g29_verbose_level); | ||||
| 
 | ||||
|       //  We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
 | ||||
|       //  the Mesh is tilted!  (We need to compensate each probe point by what the Mesh says that location's height is)
 | ||||
| 
 | ||||
|       z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); | ||||
|       z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); | ||||
|       z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); | ||||
|       z1 -= ubl.get_z_correction(lx1, ly1); | ||||
|       z2 -= ubl.get_z_correction(lx2, ly2); | ||||
|       z3 -= ubl.get_z_correction(lx3, ly3); | ||||
| 
 | ||||
|       do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); | ||||
|       tilt_mesh_based_on_3pts(z1, z2, z3); | ||||
| @ -560,7 +566,7 @@ | ||||
| 
 | ||||
|       const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); | ||||
| 
 | ||||
|       if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { | ||||
|       if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { | ||||
|         SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); | ||||
|         return; | ||||
|       } | ||||
| @ -594,7 +600,7 @@ | ||||
| 
 | ||||
|       const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); | ||||
| 
 | ||||
|       if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { | ||||
|       if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { | ||||
|         SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); | ||||
|         SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); | ||||
|         goto LEAVE; | ||||
| @ -754,14 +760,14 @@ | ||||
|                     rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|         // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|         if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { | ||||
|         if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) { | ||||
|           SERIAL_ERROR_START; | ||||
|           SERIAL_ERRORLNPGM("Attempt to probe off the bed."); | ||||
|           ubl.has_control_of_lcd_panel = false; | ||||
|           goto LEAVE; | ||||
|         } | ||||
|         const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); | ||||
|         ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; | ||||
|         ubl.z_values[location.x_index][location.y_index] = measured_z; | ||||
|       } | ||||
| 
 | ||||
|       if (do_ubl_mesh_map) ubl.display_map(map_type); | ||||
| @ -779,17 +785,17 @@ | ||||
|     ); | ||||
|   } | ||||
| 
 | ||||
|   vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) { | ||||
|   vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) { | ||||
|     float c, d, t; | ||||
|     int i, j; | ||||
| 
 | ||||
|     vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X), | ||||
|                             (ubl_3_point_1_Y - ubl_3_point_2_Y), | ||||
|                             (pt1 - pt2) ), | ||||
|                             (z1 - z2) ), | ||||
| 
 | ||||
|              v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X), | ||||
|                             (ubl_3_point_3_Y - ubl_3_point_2_Y), | ||||
|                             (pt3 - pt2) ), | ||||
|                             (z3 - z2) ), | ||||
| 
 | ||||
|              normal = vector_3::cross(v1, v2); | ||||
| 
 | ||||
| @ -811,7 +817,7 @@ | ||||
|     // All of 3 of these points should give us the same d constant
 | ||||
|     //
 | ||||
|     t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y; | ||||
|     d = t + normal.z * pt1; | ||||
|     d = t + normal.z * z1; | ||||
|     c = d - t; | ||||
|     SERIAL_ECHOPGM("d from 1st point: "); | ||||
|     SERIAL_ECHO_F(d, 6); | ||||
| @ -819,7 +825,7 @@ | ||||
|     SERIAL_ECHO_F(c, 6); | ||||
|     SERIAL_EOL; | ||||
|     t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y; | ||||
|     d = t + normal.z * pt2; | ||||
|     d = t + normal.z * z2; | ||||
|     c = d - t; | ||||
|     SERIAL_ECHOPGM("d from 2nd point: "); | ||||
|     SERIAL_ECHO_F(d, 6); | ||||
| @ -827,7 +833,7 @@ | ||||
|     SERIAL_ECHO_F(c, 6); | ||||
|     SERIAL_EOL; | ||||
|     t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y; | ||||
|     d = t + normal.z * pt3; | ||||
|     d = t + normal.z * z3; | ||||
|     c = d - t; | ||||
|     SERIAL_ECHOPGM("d from 3rd point: "); | ||||
|     SERIAL_ECHO_F(d, 6); | ||||
| @ -904,7 +910,7 @@ | ||||
|                   rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|       if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { | ||||
|       if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { | ||||
|         SERIAL_ERROR_START; | ||||
|         SERIAL_ERRORLNPGM("Attempt to probe off the bed."); | ||||
|         ubl.has_control_of_lcd_panel = false; | ||||
| @ -976,21 +982,21 @@ | ||||
|     #endif | ||||
| 
 | ||||
|     g29_verbose_level = code_seen('V') ? code_value_int() : 0; | ||||
|     if (g29_verbose_level < 0 || g29_verbose_level > 4) { | ||||
|     if (!WITHIN(g29_verbose_level, 0, 4)) { | ||||
|       SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); | ||||
|       return UBL_ERR; | ||||
|     } | ||||
| 
 | ||||
|     x_flag = code_seen('X') && code_has_value(); | ||||
|     x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; | ||||
|     if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) { | ||||
|     if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) { | ||||
|       SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); | ||||
|       return UBL_ERR; | ||||
|     } | ||||
| 
 | ||||
|     y_flag = code_seen('Y') && code_has_value(); | ||||
|     y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; | ||||
|     if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) { | ||||
|     if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) { | ||||
|       SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); | ||||
|       return UBL_ERR; | ||||
|     } | ||||
| @ -1018,7 +1024,7 @@ | ||||
|     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
|       if (code_seen('F') && code_has_value()) { | ||||
|         const float fh = code_value_float(); | ||||
|         if (fh < 0.0 || fh > 100.0) { | ||||
|         if (!WITHIN(fh, 0.0, 100.0)) { | ||||
|           SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); | ||||
|           return UBL_ERR; | ||||
|         } | ||||
| @ -1035,7 +1041,7 @@ | ||||
|     } | ||||
| 
 | ||||
|     map_type = code_seen('O') && code_has_value() ? code_value_int() : 0; | ||||
|     if (map_type < 0 || map_type > 1) { | ||||
|     if (!WITHIN(map_type, 0, 1)) { | ||||
|       SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); | ||||
|       return UBL_ERR; | ||||
|     } | ||||
| @ -1043,7 +1049,7 @@ | ||||
|     /*
 | ||||
|     if (code_seen('M')) {     // Check if a map type was specified
 | ||||
|       map_type = code_has_value() ? code_value_int() : 0;  | ||||
|       if (map_type < 0 || map_type > 1) { | ||||
|       if (!WITHIN(map_type, 0, 1)) { | ||||
|         SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); | ||||
|         return UBL_ERR; | ||||
|       } | ||||
| @ -1109,7 +1115,7 @@ | ||||
|     const uint16_t k = E2END - ubl.eeprom_start; | ||||
| 
 | ||||
|     SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); | ||||
|     if (ubl.state.active)   | ||||
|     if (ubl.state.active) | ||||
|       SERIAL_PROTOCOLCHAR('A'); | ||||
|     else | ||||
|       SERIAL_PROTOCOLPGM("In"); | ||||
| @ -1243,7 +1249,7 @@ | ||||
| 
 | ||||
|     int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values); | ||||
| 
 | ||||
|     if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) { | ||||
|     if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { | ||||
|       SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); | ||||
|       return; | ||||
|     } | ||||
| @ -1290,7 +1296,7 @@ | ||||
|           // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
 | ||||
| 
 | ||||
|           if (probe_as_reference && | ||||
|             (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) | ||||
|             (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) | ||||
|           ) continue; | ||||
| 
 | ||||
|           // Unreachable. Check if it's the closest location to the nozzle.
 | ||||
| @ -1354,7 +1360,7 @@ | ||||
|                   rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|       if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
 | ||||
|       if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
 | ||||
|         SERIAL_ERROR_START; | ||||
|         SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
 | ||||
|         ubl.has_control_of_lcd_panel = false; | ||||
| @ -1363,6 +1369,7 @@ | ||||
| 
 | ||||
|       do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
 | ||||
|       do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); | ||||
| 
 | ||||
|       float new_z = ubl.z_values[location.x_index][location.y_index]; | ||||
|        | ||||
|       round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
 | ||||
| @ -1425,4 +1432,4 @@ | ||||
|     SERIAL_ECHOLNPGM("Done Editing Mesh."); | ||||
|   } | ||||
| 
 | ||||
| #endif // AUTO_BED_LEVELING_UBL
 | ||||
| #endif // AUTO_BED_LEVELING_UBL
 | ||||
| @ -31,7 +31,14 @@ | ||||
| 
 | ||||
|   extern float destination[XYZE]; | ||||
|   extern void set_current_to_destination(); | ||||
|   extern float destination[]; | ||||
| 
 | ||||
|   static void debug_echo_axis(const AxisEnum axis) { | ||||
|     if (current_position[axis] == destination[axis]) | ||||
|       SERIAL_ECHOPGM("-------------"); | ||||
|     else | ||||
|       SERIAL_ECHO_F(destination[X_AXIS], 6); | ||||
|   } | ||||
| 
 | ||||
|   void debug_current_and_destination(char *title) { | ||||
| 
 | ||||
|     // if the title message starts with a '!' it is so important, we are going to
 | ||||
| @ -67,32 +74,13 @@ | ||||
|     SERIAL_ECHOPGM(", "); | ||||
|     SERIAL_ECHO_F(current_position[E_AXIS], 6); | ||||
|     SERIAL_ECHOPGM(" )   destination=( "); | ||||
|     if (current_position[X_AXIS] == destination[X_AXIS]) | ||||
|       SERIAL_ECHOPGM("-------------"); | ||||
|     else | ||||
|       SERIAL_ECHO_F(destination[X_AXIS], 6); | ||||
| 
 | ||||
|     debug_echo_axis(X_AXIS); | ||||
|     SERIAL_ECHOPGM(", "); | ||||
| 
 | ||||
|     if (current_position[Y_AXIS] == destination[Y_AXIS]) | ||||
|       SERIAL_ECHOPGM("-------------"); | ||||
|     else | ||||
|       SERIAL_ECHO_F(destination[Y_AXIS], 6); | ||||
| 
 | ||||
|     debug_echo_axis(Y_AXIS); | ||||
|     SERIAL_ECHOPGM(", "); | ||||
| 
 | ||||
|     if (current_position[Z_AXIS] == destination[Z_AXIS]) | ||||
|       SERIAL_ECHOPGM("-------------"); | ||||
|     else | ||||
|       SERIAL_ECHO_F(destination[Z_AXIS], 6); | ||||
| 
 | ||||
|     debug_echo_axis(Z_AXIS); | ||||
|     SERIAL_ECHOPGM(", "); | ||||
| 
 | ||||
|     if (current_position[E_AXIS] == destination[E_AXIS]) | ||||
|       SERIAL_ECHOPGM("-------------"); | ||||
|     else | ||||
|       SERIAL_ECHO_F(destination[E_AXIS], 6); | ||||
| 
 | ||||
|     debug_echo_axis(E_AXIS); | ||||
|     SERIAL_ECHOPGM(" )   "); | ||||
|     SERIAL_ECHO(title); | ||||
|     SERIAL_EOL; | ||||
| @ -105,32 +93,37 @@ | ||||
|     //}
 | ||||
|   } | ||||
| 
 | ||||
|   void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { | ||||
|   void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) { | ||||
|     /**
 | ||||
|      * Much of the nozzle movement will be within the same cell. So we will do as little computation | ||||
|      * as possible to determine if this is the case. If this move is within the same cell, we will | ||||
|      * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave | ||||
|      */ | ||||
|     const float x_start = current_position[X_AXIS], | ||||
|                 y_start = current_position[Y_AXIS], | ||||
|                 z_start = current_position[Z_AXIS], | ||||
|                 e_start = current_position[E_AXIS]; | ||||
|     const float start[XYZE] = { | ||||
|                   current_position[X_AXIS], | ||||
|                   current_position[Y_AXIS], | ||||
|                   current_position[Z_AXIS], | ||||
|                   current_position[E_AXIS] | ||||
|                 }, | ||||
|                 end[XYZE] = { | ||||
|                   destination[X_AXIS], | ||||
|                   destination[Y_AXIS], | ||||
|                   destination[Z_AXIS], | ||||
|                   destination[E_AXIS] | ||||
|                 }; | ||||
| 
 | ||||
|     const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)), | ||||
|               cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)), | ||||
|               cell_dest_xi  = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), | ||||
|               cell_dest_yi  = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); | ||||
|     const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), | ||||
|               cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), | ||||
|               cell_dest_xi  = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), | ||||
|               cell_dest_yi  = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); | ||||
| 
 | ||||
|     if (ubl.g26_debug_flag) { | ||||
|       SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); | ||||
|       SERIAL_ECHO(x_end); | ||||
|       SERIAL_ECHOPGM(", ye="); | ||||
|       SERIAL_ECHO(y_end); | ||||
|       SERIAL_ECHOPGM(", ze="); | ||||
|       SERIAL_ECHO(z_end); | ||||
|       SERIAL_ECHOPGM(", ee="); | ||||
|       SERIAL_ECHO(e_end); | ||||
|       SERIAL_ECHOLNPGM(")"); | ||||
|       SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); | ||||
|       SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); | ||||
|       SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); | ||||
|       SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); | ||||
|       SERIAL_CHAR(')'); | ||||
|       SERIAL_EOL; | ||||
|       debug_current_and_destination((char*)"Start of ubl_line_to_destination()"); | ||||
|     } | ||||
| 
 | ||||
| @ -142,12 +135,12 @@ | ||||
|        * But we detect it and isolate it. For now, we just pass along the request. | ||||
|        */ | ||||
| 
 | ||||
|       if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { | ||||
|       if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { | ||||
| 
 | ||||
|         // Note: There is no Z Correction in this case. We are off the grid and don't know what
 | ||||
|         // a reasonable correction would be.
 | ||||
| 
 | ||||
|         planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); | ||||
|         planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); | ||||
|         set_current_to_destination(); | ||||
| 
 | ||||
|         if (ubl.g26_debug_flag) | ||||
| @ -167,7 +160,7 @@ | ||||
|        * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. | ||||
|        */ | ||||
| 
 | ||||
|       const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), | ||||
|       const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), | ||||
|                   z1 = ubl.z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio * | ||||
|                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi    ] - ubl.z_values[cell_dest_xi][cell_dest_yi    ]), | ||||
|                   z2 = ubl.z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio * | ||||
| @ -176,7 +169,7 @@ | ||||
|       // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
 | ||||
|       // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
 | ||||
| 
 | ||||
|       const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); | ||||
|       const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); | ||||
| 
 | ||||
|       float z0 = z1 + (z2 - z1) * yratio; | ||||
| 
 | ||||
| @ -186,20 +179,20 @@ | ||||
|        */ | ||||
|       /*
 | ||||
|         z_optimized = z0; | ||||
|         z0 = ubl.get_z_correction(x_end, y_end); | ||||
|         z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]); | ||||
|         if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { | ||||
|         debug_current_and_destination((char*)"FINAL_MOVE: z_correction()"); | ||||
|         if (isnan(z0)) SERIAL_ECHO(" z0==NAN  "); | ||||
|         if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  "); | ||||
|         SERIAL_ECHOPAIR("  x_end=", x_end); | ||||
|         SERIAL_ECHOPAIR("  y_end=", y_end); | ||||
|         SERIAL_ECHOPAIR("  end[X_AXIS]=", end[X_AXIS]); | ||||
|         SERIAL_ECHOPAIR("  end[Y_AXIS]=", end[Y_AXIS]); | ||||
|         SERIAL_ECHOPAIR("  z0=", z0); | ||||
|         SERIAL_ECHOPAIR("  z_optimized=", z_optimized); | ||||
|         SERIAL_ECHOPAIR("  err=",fabs(z_optimized - z0)); | ||||
|         SERIAL_EOL; | ||||
|         } | ||||
|       //*/
 | ||||
|       z0 *= ubl.fade_scaling_factor_for_z(z_end); | ||||
|       z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); | ||||
| 
 | ||||
|       /**
 | ||||
|        * If part of the Mesh is undefined, it will show up as NAN | ||||
| @ -210,7 +203,7 @@ | ||||
|        */ | ||||
|       if (isnan(z0)) z0 = 0.0; | ||||
| 
 | ||||
|       planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); | ||||
|       planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); | ||||
| 
 | ||||
|       if (ubl.g26_debug_flag) | ||||
|         debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); | ||||
| @ -227,8 +220,8 @@ | ||||
|      * blocks of code: | ||||
|      */ | ||||
| 
 | ||||
|     const float dx = x_end - x_start, | ||||
|                 dy = y_end - y_start; | ||||
|     const float dx = end[X_AXIS] - start[X_AXIS], | ||||
|                 dy = end[Y_AXIS] - start[Y_AXIS]; | ||||
| 
 | ||||
|     const int left_flag = dx < 0.0 ? 1 : 0, | ||||
|               down_flag = dy < 0.0 ? 1 : 0; | ||||
| @ -251,8 +244,8 @@ | ||||
|     const bool use_x_dist = adx > ady; | ||||
| 
 | ||||
|     float on_axis_distance = use_x_dist ? dx : dy, | ||||
|           e_position = e_end - e_start, | ||||
|           z_position = z_end - z_start; | ||||
|           e_position = end[E_AXIS] - start[E_AXIS], | ||||
|           z_position = end[Z_AXIS] - start[Z_AXIS]; | ||||
| 
 | ||||
|     const float e_normalized_dist = e_position / on_axis_distance, | ||||
|                 z_normalized_dist = z_position / on_axis_distance; | ||||
| @ -260,7 +253,7 @@ | ||||
|     int current_xi = cell_start_xi, current_yi = cell_start_yi; | ||||
| 
 | ||||
|     const float m = dy / dx, | ||||
|                 c = y_start - m * x_start; | ||||
|                 c = start[Y_AXIS] - m * start[X_AXIS]; | ||||
| 
 | ||||
|     const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance), | ||||
|                inf_m_flag = NEAR_ZERO(dx); | ||||
| @ -281,9 +274,9 @@ | ||||
|          * else, we know the next X is the same so we can recover and continue! | ||||
|          * Calculate X at the next Y mesh line | ||||
|          */ | ||||
|         const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m; | ||||
|         const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; | ||||
| 
 | ||||
|         float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); | ||||
|         float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check | ||||
| @ -305,7 +298,7 @@ | ||||
|           } | ||||
|         //*/
 | ||||
| 
 | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(z_end); | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * If part of the Mesh is undefined, it will show up as NAN | ||||
| @ -324,15 +317,15 @@ | ||||
|          * happens, it might be best to remove the check and always 'schedule' the move because | ||||
|          * the planner.buffer_line() routine will filter it if that happens. | ||||
|          */ | ||||
|         if (y != y_start) { | ||||
|         if (y != start[Y_AXIS]) { | ||||
|           if (!inf_normalized_flag) { | ||||
|             on_axis_distance = y - y_start;                               // we don't need to check if the extruder position
 | ||||
|             e_position = e_start + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a vertical move
 | ||||
|             z_position = z_start + on_axis_distance * z_normalized_dist; | ||||
|             on_axis_distance = y - start[Y_AXIS];                               // we don't need to check if the extruder position
 | ||||
|             e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a vertical move
 | ||||
|             z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; | ||||
|           } | ||||
|           else { | ||||
|             e_position = e_start; | ||||
|             z_position = z_start; | ||||
|             e_position = start[E_AXIS]; | ||||
|             z_position = start[Z_AXIS]; | ||||
|           } | ||||
| 
 | ||||
|           planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); | ||||
| @ -345,7 +338,7 @@ | ||||
|       //
 | ||||
|       // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
 | ||||
|       //
 | ||||
|       if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) | ||||
|       if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) | ||||
|         goto FINAL_MOVE; | ||||
| 
 | ||||
|       set_current_to_destination(); | ||||
| @ -368,7 +361,7 @@ | ||||
|         const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), | ||||
|                     y = m * next_mesh_line_x + c;   // Calculate X at the next Y mesh line
 | ||||
| 
 | ||||
|         float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); | ||||
|         float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check | ||||
| @ -390,7 +383,7 @@ | ||||
|           } | ||||
|         //*/
 | ||||
| 
 | ||||
|         z0 = z0 * ubl.fade_scaling_factor_for_z(z_end); | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * If part of the Mesh is undefined, it will show up as NAN | ||||
| @ -409,15 +402,15 @@ | ||||
|          * that happens, it might be best to remove the check and always 'schedule' the move because | ||||
|          * the planner.buffer_line() routine will filter it if that happens. | ||||
|          */ | ||||
|         if (x != x_start) { | ||||
|         if (x != start[X_AXIS]) { | ||||
|           if (!inf_normalized_flag) { | ||||
|             on_axis_distance = x - x_start;                               // we don't need to check if the extruder position
 | ||||
|             e_position = e_start + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a horizontal move
 | ||||
|             z_position = z_start + on_axis_distance * z_normalized_dist; | ||||
|             on_axis_distance = x - start[X_AXIS];                               // we don't need to check if the extruder position
 | ||||
|             e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a horizontal move
 | ||||
|             z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; | ||||
|           } | ||||
|           else { | ||||
|             e_position = e_start; | ||||
|             z_position = z_start; | ||||
|             e_position = start[E_AXIS]; | ||||
|             z_position = start[Z_AXIS]; | ||||
|           } | ||||
| 
 | ||||
|           planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); | ||||
| @ -427,7 +420,7 @@ | ||||
|       if (ubl.g26_debug_flag) | ||||
|         debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); | ||||
| 
 | ||||
|       if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) | ||||
|       if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) | ||||
|         goto FINAL_MOVE; | ||||
| 
 | ||||
|       set_current_to_destination(); | ||||
| @ -454,16 +447,16 @@ | ||||
|       const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), | ||||
|                   next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), | ||||
|                   y = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
 | ||||
|                   x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line    (we don't have to worry
 | ||||
|                                                   // about m being equal to 0.0  If this was the case, we would have
 | ||||
|                                                   // detected this as a vertical line move up above and we wouldn't
 | ||||
|                                                   // be down here doing a generic type of move.
 | ||||
|                   x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
 | ||||
|                                                   // (No need to worry about m being zero.
 | ||||
|                                                   //  If that was the case, it was already detected
 | ||||
|                                                   //  as a vertical line move above.)
 | ||||
| 
 | ||||
|       if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
 | ||||
|         //
 | ||||
|         // Yes!  Crossing a Y Mesh Line next
 | ||||
|         //
 | ||||
|         float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi); | ||||
|         float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check | ||||
| @ -486,7 +479,7 @@ | ||||
|           } | ||||
|         //*/
 | ||||
| 
 | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(z_end); | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * If part of the Mesh is undefined, it will show up as NAN | ||||
| @ -498,13 +491,13 @@ | ||||
|         if (isnan(z0)) z0 = 0.0; | ||||
| 
 | ||||
|         if (!inf_normalized_flag) { | ||||
|           on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start; | ||||
|           e_position = e_start + on_axis_distance * e_normalized_dist; | ||||
|           z_position = z_start + on_axis_distance * z_normalized_dist; | ||||
|           on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; | ||||
|           e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; | ||||
|           z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; | ||||
|         } | ||||
|         else { | ||||
|           e_position = e_start; | ||||
|           z_position = z_start; | ||||
|           e_position = start[E_AXIS]; | ||||
|           z_position = start[Z_AXIS]; | ||||
|         } | ||||
|         planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); | ||||
|         current_yi += dyi; | ||||
| @ -514,7 +507,7 @@ | ||||
|         //
 | ||||
|         // Yes!  Crossing a X Mesh Line next
 | ||||
|         //
 | ||||
|         float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag); | ||||
|         float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check | ||||
| @ -536,7 +529,7 @@ | ||||
|           } | ||||
|         //*/
 | ||||
| 
 | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(z_end); | ||||
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * If part of the Mesh is undefined, it will show up as NAN | ||||
| @ -548,13 +541,13 @@ | ||||
|         if (isnan(z0)) z0 = 0.0; | ||||
| 
 | ||||
|         if (!inf_normalized_flag) { | ||||
|           on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start; | ||||
|           e_position = e_start + on_axis_distance * e_normalized_dist; | ||||
|           z_position = z_start + on_axis_distance * z_normalized_dist; | ||||
|           on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; | ||||
|           e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; | ||||
|           z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; | ||||
|         } | ||||
|         else { | ||||
|           e_position = e_start; | ||||
|           z_position = z_start; | ||||
|           e_position = start[E_AXIS]; | ||||
|           z_position = start[Z_AXIS]; | ||||
|         } | ||||
| 
 | ||||
|         planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); | ||||
| @ -566,7 +559,7 @@ | ||||
|     if (ubl.g26_debug_flag) | ||||
|       debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); | ||||
| 
 | ||||
|     if (current_position[0] != x_end || current_position[1] != y_end) | ||||
|     if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) | ||||
|       goto FINAL_MOVE; | ||||
| 
 | ||||
|     set_current_to_destination(); | ||||
|  | ||||
| @ -35,8 +35,10 @@ | ||||
|  * (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino) | ||||
|  */ | ||||
| 
 | ||||
|  #ifndef _ENDSTOP_INTERRUPTS_H_ | ||||
|  #define _ENDSTOP_INTERRUPTS_H_ | ||||
| #ifndef _ENDSTOP_INTERRUPTS_H_ | ||||
| #define _ENDSTOP_INTERRUPTS_H_ | ||||
| 
 | ||||
| #include "macros.h" | ||||
| 
 | ||||
| /**
 | ||||
|  * Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h) | ||||
| @ -47,39 +49,37 @@ | ||||
|  */ | ||||
| #if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA) | ||||
|   #undef  digitalPinToPCICR | ||||
|   #define digitalPinToPCICR(p)    ( (((p) >= 10) && ((p) <= 15)) || \ | ||||
|                                   (((p) >= 50) && ((p) <= 53)) || \ | ||||
|                                   (((p) >= 62) && ((p) <= 69)) ? (&PCICR) : ((uint8_t *)0) ) | ||||
|   #define digitalPinToPCICR(p)    ( WITHIN(p, 10, 15) || \ | ||||
|                                     WITHIN(p, 50, 53) || \ | ||||
|                                     WITHIN(p, 62, 69) ? &PCICR : (uint8_t*)0 ) | ||||
|   #undef  digitalPinToPCICRbit | ||||
|   #define digitalPinToPCICRbit(p) ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? 0 : \ | ||||
|                                   ( (((p) >= 14) && ((p) <= 15)) ? 1 : \ | ||||
|                                   ( (((p) >= 62) && ((p) <= 69)) ? 2 : \ | ||||
|                                   0 ) ) ) | ||||
|   #define digitalPinToPCICRbit(p) ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \ | ||||
|                                     WITHIN(p, 14, 15) ? 1 : \ | ||||
|                                     WITHIN(p, 62, 69) ? 2 : \ | ||||
|                                     0 ) | ||||
|   #undef  digitalPinToPCMSK | ||||
|   #define digitalPinToPCMSK(p)    ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? (&PCMSK0) : \ | ||||
|                                   ( (((p) >= 14) && ((p) <= 15)) ? (&PCMSK1) : \ | ||||
|                                   ( (((p) >= 62) && ((p) <= 69)) ? (&PCMSK2) : \ | ||||
|                                   ((uint8_t *)0) ) ) ) | ||||
|   #define digitalPinToPCMSK(p)    ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? &PCMSK0 : \ | ||||
|                                     WITHIN(p, 14, 15) ? &PCMSK1 : \ | ||||
|                                     WITHIN(p, 62, 69) ? &PCMSK2 : \ | ||||
|                                     (uint8_t *)0 ) | ||||
|   #undef  digitalPinToPCMSKbit | ||||
|   #define digitalPinToPCMSKbit(p) ( (((p) >= 10) && ((p) <= 13)) ? ((p) - 6) : \ | ||||
|                                   ( ((p) == 14) ? 2 : \ | ||||
|                                   ( ((p) == 15) ? 1 : \ | ||||
|                                   ( ((p) == 50) ? 3 : \ | ||||
|                                   ( ((p) == 51) ? 2 : \ | ||||
|                                   ( ((p) == 52) ? 1 : \ | ||||
|                                   ( ((p) == 53) ? 0 : \ | ||||
|                                   ( (((p) >= 62) && ((p) <= 69)) ? ((p) - 62) : \ | ||||
|                                   0 ) ) ) ) ) ) ) ) | ||||
|   #define digitalPinToPCMSKbit(p) ( WITHIN(p, 10, 13) ? ((p) - 6) : \ | ||||
|                                     (p) == 14 || (p) == 51 ? 2 : \ | ||||
|                                     (p) == 15 || (p) == 52 ? 1 : \ | ||||
|                                     (p) == 50 ? 3 : \ | ||||
|                                     (p) == 53 ? 0 : \ | ||||
|                                     WITHIN(p, 62, 69) ? ((p) - 62) : \ | ||||
|                                     0 ) | ||||
| #endif | ||||
| 
 | ||||
| volatile uint8_t e_hit = 0; // Different from 0 when the endstops shall be tested in detail.
 | ||||
|                             // Must be reset to 0 by the test function when the tests are finished.
 | ||||
| volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
 | ||||
|                             // Must be reset to 0 by the test function when finished.
 | ||||
| 
 | ||||
| // Install Pin change interrupt for a pin. Can be called multiple times.
 | ||||
| void pciSetup(byte pin) { | ||||
|   *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin));  // enable pin
 | ||||
|   PCIFR  |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
 | ||||
|   PCICR  |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
 | ||||
|   SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin));  // enable pin
 | ||||
|   SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
 | ||||
|   SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group
 | ||||
| } | ||||
| 
 | ||||
| // This is what is really done inside the interrupts.
 | ||||
|  | ||||
| @ -75,7 +75,8 @@ | ||||
| #define ENABLED(b) _CAT(SWITCH_ENABLED_, b) | ||||
| #define DISABLED(b) (!_CAT(SWITCH_ENABLED_, b)) | ||||
| 
 | ||||
| #define NUMERIC(a) ((a) >= '0' && '9' >= (a)) | ||||
| #define WITHIN(V,L,H) ((V) >= (L) && (V) <= (H)) | ||||
| #define NUMERIC(a) WITHIN(a, '0', '9') | ||||
| #define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-') | ||||
| #define COUNT(a) (sizeof(a)/sizeof(*a)) | ||||
| #define ZERO(a) memset(a,0,sizeof(a)) | ||||
| @ -133,9 +134,10 @@ | ||||
| #define MAX4(a, b, c, d) max(max(a, b), max(c, d)) | ||||
| 
 | ||||
| #define UNEAR_ZERO(x) ((x) < 0.000001) | ||||
| #define NEAR_ZERO(x) ((x) > -0.000001 && (x) < 0.000001) | ||||
| #define NEAR_ZERO(x) WITHIN(x, -0.000001, 0.000001) | ||||
| #define NEAR(x,y) NEAR_ZERO((x)-(y)) | ||||
| 
 | ||||
| #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x)) | ||||
| #define FIXFLOAT(f) (f + 0.00001) | ||||
| 
 | ||||
| #endif //__MACROS_H
 | ||||
|  | ||||
| @ -88,12 +88,12 @@ | ||||
| 
 | ||||
|     static int8_t probe_index_x(const float &x) { | ||||
|       int8_t px = (x - (MESH_MIN_X) + 0.5 * (MESH_X_DIST)) * (1.0 / (MESH_X_DIST)); | ||||
|       return (px >= 0 && px < (MESH_NUM_X_POINTS)) ? px : -1; | ||||
|       return WITHIN(px, 0, MESH_NUM_X_POINTS - 1) ? px : -1; | ||||
|     } | ||||
| 
 | ||||
|     static int8_t probe_index_y(const float &y) { | ||||
|       int8_t py = (y - (MESH_MIN_Y) + 0.5 * (MESH_Y_DIST)) * (1.0 / (MESH_Y_DIST)); | ||||
|       return (py >= 0 && py < (MESH_NUM_Y_POINTS)) ? py : -1; | ||||
|       return WITHIN(py, 0, MESH_NUM_Y_POINTS - 1) ? py : -1; | ||||
|     } | ||||
| 
 | ||||
|     static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
|  * | ||||
|  */ | ||||
| 
 | ||||
| #include "macros.h" | ||||
| 
 | ||||
| bool endstop_monitor_flag = false; | ||||
| 
 | ||||
| #if !defined(TIMER1B)    // working with Teensyduino extension so need to re-define some things
 | ||||
| @ -35,7 +37,7 @@ bool endstop_monitor_flag = false; | ||||
| #define _ANALOG_PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); pin_is_analog = true; return true; } | ||||
| #define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _ANALOG_PIN_SAY(#NAME); | ||||
| 
 | ||||
| #define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(5))) | ||||
| #define IS_ANALOG(P) ( WITHIN(P, analogInputToDigitalPin(0), analogInputToDigitalPin(15)) || (P) <= analogInputToDigitalPin(5) ) | ||||
| 
 | ||||
| int digitalRead_mod(int8_t pin) { // same as digitalRead except the PWM stop section has been removed
 | ||||
|   uint8_t port = digitalPinToPort(pin); | ||||
|  | ||||
| @ -999,7 +999,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const | ||||
|     unsigned long segment_time = lround(1000000.0 / inverse_mm_s); | ||||
|   #endif | ||||
|   #if ENABLED(SLOWDOWN) | ||||
|     if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) { | ||||
|     if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { | ||||
|       if (segment_time < min_segment_time) { | ||||
|         // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | ||||
|         inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); | ||||
|  | ||||
| @ -786,11 +786,11 @@ void Temperature::manage_heater() { | ||||
|     #if ENABLED(PIDTEMPBED) | ||||
|       float pid_output = get_pid_output_bed(); | ||||
| 
 | ||||
|       soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; | ||||
|       soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0; | ||||
| 
 | ||||
|     #elif ENABLED(BED_LIMIT_SWITCHING) | ||||
|       // Check if temperature is within the correct band
 | ||||
|       if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { | ||||
|       if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { | ||||
|         if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) | ||||
|           soft_pwm_bed = 0; | ||||
|         else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS)) | ||||
| @ -802,7 +802,7 @@ void Temperature::manage_heater() { | ||||
|       } | ||||
|     #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
 | ||||
|       // Check if temperature is within the correct range
 | ||||
|       if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { | ||||
|       if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { | ||||
|         soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; | ||||
|       } | ||||
|       else { | ||||
|  | ||||
| @ -42,7 +42,7 @@ void TWIBus::reset() { | ||||
| } | ||||
| 
 | ||||
| void TWIBus::address(const uint8_t adr) { | ||||
|   if (adr < 8 || adr > 127) { | ||||
|   if (!WITHIN(adr, 8, 127)) { | ||||
|     SERIAL_ECHO_START; | ||||
|     SERIAL_ECHOLNPGM("Bad I2C address (8-127)"); | ||||
|   } | ||||
|  | ||||
| @ -30,8 +30,6 @@ | ||||
| #include "configuration_store.h" | ||||
| #include "utility.h" | ||||
| 
 | ||||
| extern float zprobe_zoffset; | ||||
| 
 | ||||
| #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) | ||||
|   #include "buzzer.h" | ||||
| #endif | ||||
|  | ||||
| @ -213,7 +213,7 @@ static void lcd_setFont(const char font_nr) { | ||||
| } | ||||
| 
 | ||||
| void lcd_print(const char c) { | ||||
|   if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) { | ||||
|   if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) { | ||||
|     u8g.setFont(FONT_SPECIAL_NAME); | ||||
|     u8g.print(c); | ||||
|     lcd_setFont(currentfont); | ||||
| @ -222,7 +222,7 @@ void lcd_print(const char c) { | ||||
| } | ||||
| 
 | ||||
| char lcd_print_and_count(const char c) { | ||||
|   if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) { | ||||
|   if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) { | ||||
|     u8g.setFont(FONT_SPECIAL_NAME); | ||||
|     u8g.print(c); | ||||
|     lcd_setFont(currentfont); | ||||
| @ -543,7 +543,7 @@ static void lcd_implementation_status_screen() { | ||||
|   if (page.page == 0) { | ||||
|     strcpy(xstring, ftostr4sign(current_position[X_AXIS])); | ||||
|     strcpy(ystring, ftostr4sign(current_position[Y_AXIS])); | ||||
|     strcpy(zstring, ftostr52sp(current_position[Z_AXIS] + 0.00001)); | ||||
|     strcpy(zstring, ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); | ||||
|     #if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT) | ||||
|       strcpy(wstring, ftostr12ns(filament_width_meas)); | ||||
|       strcpy(mstring, itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); | ||||
|  | ||||
| @ -729,7 +729,7 @@ static void lcd_implementation_status_screen() { | ||||
| 
 | ||||
|     lcd.setCursor(LCD_WIDTH - 8, 1); | ||||
|     _draw_axis_label(Z_AXIS, PSTR(MSG_Z), blink); | ||||
|     lcd.print(ftostr52sp(current_position[Z_AXIS] + 0.00001)); | ||||
|     lcd.print(ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); | ||||
| 
 | ||||
|   #endif // LCD_HEIGHT > 2
 | ||||
| 
 | ||||
|  | ||||
| @ -134,7 +134,7 @@ void safe_delay(millis_t ms) { | ||||
|     // Convert float to rj string with 1234, _123, -123, _-12, 12.3, _1.2, or -1.2 format
 | ||||
|     char *ftostr4sign(const float& fx) { | ||||
|       int x = fx * 10; | ||||
|       if (x <= -100 || x >= 1000) return itostr4sign((int)fx); | ||||
|       if (WITHIN(x, -99, 999)) return itostr4sign((int)fx); | ||||
|       int xx = abs(x); | ||||
|       conv[0] = x < 0 ? '-' : (xx >= 100 ? DIGIMOD(xx, 100) : ' '); | ||||
|       conv[1] = DIGIMOD(xx, 10); | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user