Merge Suppress some compiler warnings (PR#70)
This commit is contained in:
		
						commit
						4939c642b4
					
				| @ -5,6 +5,10 @@ | |||||||
| #define MARLIN_H | #define MARLIN_H | ||||||
| 
 | 
 | ||||||
| #define  FORCE_INLINE __attribute__((always_inline)) inline | #define  FORCE_INLINE __attribute__((always_inline)) inline | ||||||
|  | /**
 | ||||||
|  |  * Compiler warning on unused varable. | ||||||
|  |  */ | ||||||
|  | #define UNUSED(x) (void) (x) | ||||||
| 
 | 
 | ||||||
| #include <math.h> | #include <math.h> | ||||||
| #include <stdio.h> | #include <stdio.h> | ||||||
|  | |||||||
| @ -1,8 +1,8 @@ | |||||||
| #include "Marlin.h" | #include "Marlin.h" | ||||||
| #include "buzzer.h" |  | ||||||
| #include "ultralcd.h" |  | ||||||
| 
 |  | ||||||
| #if HAS_BUZZER | #if HAS_BUZZER | ||||||
|  |   #include "buzzer.h" | ||||||
|  |   #include "ultralcd.h" | ||||||
|  | 
 | ||||||
|   void buzz(long duration, uint16_t freq) { |   void buzz(long duration, uint16_t freq) { | ||||||
|     if (freq > 0) { |     if (freq > 0) { | ||||||
|       #if ENABLED(LCD_USE_I2C_BUZZER) |       #if ENABLED(LCD_USE_I2C_BUZZER) | ||||||
|  | |||||||
| @ -168,7 +168,7 @@ void Config_StoreSettings()  { | |||||||
|     EEPROM_WRITE_VAR(i, mesh_num_x); |     EEPROM_WRITE_VAR(i, mesh_num_x); | ||||||
|     EEPROM_WRITE_VAR(i, mesh_num_y); |     EEPROM_WRITE_VAR(i, mesh_num_y); | ||||||
|     dummy = 0.0f; |     dummy = 0.0f; | ||||||
|     for (int q=0; q<mesh_num_x*mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); |     for (uint8_t q=0; q<mesh_num_x*mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); | ||||||
|   #endif // MESH_BED_LEVELING
 |   #endif // MESH_BED_LEVELING
 | ||||||
| 
 | 
 | ||||||
|   #if DISABLED(ENABLE_AUTO_BED_LEVELING) |   #if DISABLED(ENABLE_AUTO_BED_LEVELING) | ||||||
| @ -470,7 +470,7 @@ void Config_ResetDefault() { | |||||||
|   float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; |   float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; | ||||||
|   float tmp2[] = DEFAULT_MAX_FEEDRATE; |   float tmp2[] = DEFAULT_MAX_FEEDRATE; | ||||||
|   long tmp3[] = DEFAULT_MAX_ACCELERATION; |   long tmp3[] = DEFAULT_MAX_ACCELERATION; | ||||||
|   for (uint16_t i = 0; i < NUM_AXIS; i++) { |   for (uint8_t i = 0; i < NUM_AXIS; i++) { | ||||||
|     axis_steps_per_unit[i] = tmp1[i]; |     axis_steps_per_unit[i] = tmp1[i]; | ||||||
|     max_feedrate[i] = tmp2[i]; |     max_feedrate[i] = tmp2[i]; | ||||||
|     max_acceleration_units_per_sq_second[i] = tmp3[i]; |     max_acceleration_units_per_sq_second[i] = tmp3[i]; | ||||||
| @ -565,7 +565,7 @@ void Config_ResetDefault() { | |||||||
|   #endif |   #endif | ||||||
| 
 | 
 | ||||||
|   volumetric_enabled = false; |   volumetric_enabled = false; | ||||||
|   for (int q=0; q<COUNT(filament_size); q++) |   for (uint8_t q=0; q<COUNT(filament_size); q++) | ||||||
|     filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; |     filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; | ||||||
|   calculate_volumetric_multipliers(); |   calculate_volumetric_multipliers(); | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -1,7 +1,7 @@ | |||||||
| /**
 | /**
 | ||||||
|  * planner.cpp - Buffer movement commands and manage the acceleration profile plan |  * planner.cpp - Buffer movement commands and manage the acceleration profile plan | ||||||
|  * Part of Grbl |  * Part of Grbl | ||||||
|  *  |  * | ||||||
|  * Copyright (c) 2009-2011 Simen Svale Skogsrud |  * Copyright (c) 2009-2011 Simen Svale Skogsrud | ||||||
|  * |  * | ||||||
|  * Grbl is free software: you can redistribute it and/or modify |  * Grbl is free software: you can redistribute it and/or modify | ||||||
| @ -134,14 +134,14 @@ unsigned char g_uc_extruder_last_move[4] = {0,0,0,0}; | |||||||
| FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } | FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } | ||||||
| FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } | FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } | ||||||
| 
 | 
 | ||||||
| // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the 
 | // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
 | ||||||
| // given acceleration:
 | // given acceleration:
 | ||||||
| FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { | FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { | ||||||
|   if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
 |   if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
 | ||||||
|   return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); |   return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // This function gives you the point at which you must start braking (at the rate of -acceleration) if 
 | // This function gives you the point at which you must start braking (at the rate of -acceleration) if
 | ||||||
| // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
 | // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
 | ||||||
| // a total travel of distance. This can be used to compute the intersection point between acceleration and
 | // a total travel of distance. This can be used to compute the intersection point between acceleration and
 | ||||||
| // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
 | // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
 | ||||||
| @ -179,7 +179,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi | |||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
| #if ENABLED(ADVANCE) | #if ENABLED(ADVANCE) | ||||||
|   volatile long initial_advance = block->advance * entry_factor * entry_factor;  |   volatile long initial_advance = block->advance * entry_factor * entry_factor; | ||||||
|   volatile long final_advance = block->advance * exit_factor * exit_factor; |   volatile long final_advance = block->advance * exit_factor * exit_factor; | ||||||
| #endif // ADVANCE
 | #endif // ADVANCE
 | ||||||
| 
 | 
 | ||||||
| @ -197,16 +197,16 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi | |||||||
|     #endif |     #endif | ||||||
|   } |   } | ||||||
|   CRITICAL_SECTION_END; |   CRITICAL_SECTION_END; | ||||||
| }                     | } | ||||||
| 
 | 
 | ||||||
| // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the 
 | // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
 | ||||||
| // acceleration within the allotted distance.
 | // acceleration within the allotted distance.
 | ||||||
| FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { | FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { | ||||||
|   return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); |   return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | ||||||
| // This method will calculate the junction jerk as the euclidean distance between the nominal 
 | // This method will calculate the junction jerk as the euclidean distance between the nominal
 | ||||||
| // velocities of the respective blocks.
 | // velocities of the respective blocks.
 | ||||||
| //inline float junction_jerk(block_t *before, block_t *after) {
 | //inline float junction_jerk(block_t *before, block_t *after) {
 | ||||||
| //  return sqrt(
 | //  return sqrt(
 | ||||||
| @ -217,6 +217,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity | |||||||
| // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
 | // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
 | ||||||
| void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { | void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { | ||||||
|   if (!current) return; |   if (!current) return; | ||||||
|  |   UNUSED(previous); | ||||||
| 
 | 
 | ||||||
|   if (next) { |   if (next) { | ||||||
|     // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 |     // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 | ||||||
| @ -229,7 +230,7 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n | |||||||
|       if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) { |       if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) { | ||||||
|         current->entry_speed = min(current->max_entry_speed, |         current->entry_speed = min(current->max_entry_speed, | ||||||
|           max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); |           max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); | ||||||
|       }  |       } | ||||||
|       else { |       else { | ||||||
|         current->entry_speed = current->max_entry_speed; |         current->entry_speed = current->max_entry_speed; | ||||||
|       } |       } | ||||||
| @ -239,16 +240,16 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n | |||||||
|   } // Skip last block. Already initialized and set for recalculation.
 |   } // Skip last block. Already initialized and set for recalculation.
 | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
 | // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
 | ||||||
| // implements the reverse pass.
 | // implements the reverse pass.
 | ||||||
| void planner_reverse_pass() { | void planner_reverse_pass() { | ||||||
|   uint8_t block_index = block_buffer_head; |   uint8_t block_index = block_buffer_head; | ||||||
|    | 
 | ||||||
|   //Make a local copy of block_buffer_tail, because the interrupt can alter it
 |   //Make a local copy of block_buffer_tail, because the interrupt can alter it
 | ||||||
|   CRITICAL_SECTION_START; |   CRITICAL_SECTION_START; | ||||||
|     unsigned char tail = block_buffer_tail; |     unsigned char tail = block_buffer_tail; | ||||||
|   CRITICAL_SECTION_END |   CRITICAL_SECTION_END | ||||||
|    | 
 | ||||||
|   if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
 |   if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
 | ||||||
|     block_index = BLOCK_MOD(block_buffer_head - 3); |     block_index = BLOCK_MOD(block_buffer_head - 3); | ||||||
|     block_t *block[3] = { NULL, NULL, NULL }; |     block_t *block[3] = { NULL, NULL, NULL }; | ||||||
| @ -265,6 +266,7 @@ void planner_reverse_pass() { | |||||||
| // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
 | // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
 | ||||||
| void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { | void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { | ||||||
|   if (!previous) return; |   if (!previous) return; | ||||||
|  |   UNUSED(next); | ||||||
| 
 | 
 | ||||||
|   // If the previous block is an acceleration block, but it is not long enough to complete the
 |   // If the previous block is an acceleration block, but it is not long enough to complete the
 | ||||||
|   // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 |   // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 | ||||||
| @ -300,8 +302,8 @@ void planner_forward_pass() { | |||||||
|   planner_forward_pass_kernel(block[1], block[2], NULL); |   planner_forward_pass_kernel(block[1], block[2], NULL); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // Recalculates the trapezoid speed profiles for all blocks in the plan according to the 
 | // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
 | ||||||
| // entry_factor for each junction. Must be called by planner_recalculate() after 
 | // entry_factor for each junction. Must be called by planner_recalculate() after
 | ||||||
| // updating the blocks.
 | // updating the blocks.
 | ||||||
| void planner_recalculate_trapezoids() { | void planner_recalculate_trapezoids() { | ||||||
|   int8_t block_index = block_buffer_tail; |   int8_t block_index = block_buffer_tail; | ||||||
| @ -332,22 +334,22 @@ void planner_recalculate_trapezoids() { | |||||||
| 
 | 
 | ||||||
| // Recalculates the motion plan according to the following algorithm:
 | // Recalculates the motion plan according to the following algorithm:
 | ||||||
| //
 | //
 | ||||||
| //   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) 
 | //   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
 | ||||||
| //      so that:
 | //      so that:
 | ||||||
| //     a. The junction jerk is within the set limit
 | //     a. The junction jerk is within the set limit
 | ||||||
| //     b. No speed reduction within one block requires faster deceleration than the one, true constant 
 | //     b. No speed reduction within one block requires faster deceleration than the one, true constant
 | ||||||
| //        acceleration.
 | //        acceleration.
 | ||||||
| //   2. Go over every block in chronological order and dial down junction speed reduction values if 
 | //   2. Go over every block in chronological order and dial down junction speed reduction values if
 | ||||||
| //     a. The speed increase within one block would require faster acceleration than the one, true 
 | //     a. The speed increase within one block would require faster acceleration than the one, true
 | ||||||
| //        constant acceleration.
 | //        constant acceleration.
 | ||||||
| //
 | //
 | ||||||
| // When these stages are complete all blocks have an entry_factor that will allow all speed changes to 
 | // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
 | ||||||
| // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than 
 | // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
 | ||||||
| // the set limit. Finally it will:
 | // the set limit. Finally it will:
 | ||||||
| //
 | //
 | ||||||
| //   3. Recalculate trapezoids for all blocks.
 | //   3. Recalculate trapezoids for all blocks.
 | ||||||
| 
 | 
 | ||||||
| void planner_recalculate() {    | void planner_recalculate() { | ||||||
|   planner_reverse_pass(); |   planner_reverse_pass(); | ||||||
|   planner_forward_pass(); |   planner_forward_pass(); | ||||||
|   planner_recalculate_trapezoids(); |   planner_recalculate_trapezoids(); | ||||||
| @ -356,7 +358,7 @@ void planner_recalculate() { | |||||||
| void plan_init() { | void plan_init() { | ||||||
|   block_buffer_head = block_buffer_tail = 0; |   block_buffer_head = block_buffer_tail = 0; | ||||||
|   memset(position, 0, sizeof(position)); // clear position
 |   memset(position, 0, sizeof(position)); // clear position
 | ||||||
|   for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;  |   for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0; | ||||||
|   previous_nominal_speed = 0.0; |   previous_nominal_speed = 0.0; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| @ -469,7 +471,7 @@ void check_axes_activity() { | |||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| float junction_deviation = 0.1; | float junction_deviation = 0.1; | ||||||
| // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in 
 | // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
 | ||||||
| // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
 | // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
 | ||||||
| // calculation the caller must also provide the physical length of the line in millimeters.
 | // calculation the caller must also provide the physical length of the line in millimeters.
 | ||||||
| #if ENABLED(ENABLE_AUTO_BED_LEVELING) || ENABLED(MESH_BED_LEVELING) | #if ENABLED(ENABLE_AUTO_BED_LEVELING) || ENABLED(MESH_BED_LEVELING) | ||||||
| @ -481,7 +483,7 @@ float junction_deviation = 0.1; | |||||||
|   // Calculate the buffer head after we push this byte
 |   // Calculate the buffer head after we push this byte
 | ||||||
|   int next_buffer_head = next_block_index(block_buffer_head); |   int next_buffer_head = next_block_index(block_buffer_head); | ||||||
| 
 | 
 | ||||||
|   // If the buffer is full: good! That means we are well ahead of the robot. 
 |   // If the buffer is full: good! That means we are well ahead of the robot.
 | ||||||
|   // Rest here until there is room in the buffer.
 |   // Rest here until there is room in the buffer.
 | ||||||
|   while (block_buffer_tail == next_buffer_head) idle(); |   while (block_buffer_tail == next_buffer_head) idle(); | ||||||
| 
 | 
 | ||||||
| @ -497,7 +499,7 @@ float junction_deviation = 0.1; | |||||||
|   long target[NUM_AXIS]; |   long target[NUM_AXIS]; | ||||||
|   target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); |   target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); | ||||||
|   target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); |   target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); | ||||||
|   target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);      |   target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); | ||||||
|   target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); |   target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); | ||||||
| 
 | 
 | ||||||
|   float dx = target[X_AXIS] - position[X_AXIS], |   float dx = target[X_AXIS] - position[X_AXIS], | ||||||
| @ -569,7 +571,7 @@ float junction_deviation = 0.1; | |||||||
|     block->e_to_p_pressure = EtoPPressure; |     block->e_to_p_pressure = EtoPPressure; | ||||||
|   #endif |   #endif | ||||||
| 
 | 
 | ||||||
|   // Compute direction bits for this block 
 |   // Compute direction bits for this block
 | ||||||
|   uint8_t db = 0; |   uint8_t db = 0; | ||||||
|   #if ENABLED(COREXY) |   #if ENABLED(COREXY) | ||||||
|     if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
 |     if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
 | ||||||
| @ -585,10 +587,10 @@ float junction_deviation = 0.1; | |||||||
|     if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
 |     if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
 | ||||||
|   #else |   #else | ||||||
|     if (dx < 0) db |= BIT(X_AXIS); |     if (dx < 0) db |= BIT(X_AXIS); | ||||||
|     if (dy < 0) db |= BIT(Y_AXIS);  |     if (dy < 0) db |= BIT(Y_AXIS); | ||||||
|     if (dz < 0) db |= BIT(Z_AXIS); |     if (dz < 0) db |= BIT(Z_AXIS); | ||||||
|   #endif |   #endif | ||||||
|   if (de < 0) db |= BIT(E_AXIS);  |   if (de < 0) db |= BIT(E_AXIS); | ||||||
|   block->direction_bits = db; |   block->direction_bits = db; | ||||||
| 
 | 
 | ||||||
|   block->active_extruder = extruder; |   block->active_extruder = extruder; | ||||||
| @ -622,7 +624,7 @@ float junction_deviation = 0.1; | |||||||
| 
 | 
 | ||||||
|       for (int i=0; i<EXTRUDERS; i++) |       for (int i=0; i<EXTRUDERS; i++) | ||||||
|         if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; |         if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; | ||||||
|        | 
 | ||||||
|       switch(extruder) { |       switch(extruder) { | ||||||
|         case 0: |         case 0: | ||||||
|           enable_e0(); |           enable_e0(); | ||||||
| @ -686,13 +688,13 @@ float junction_deviation = 0.1; | |||||||
|     NOLESS(feed_rate, mintravelfeedrate); |     NOLESS(feed_rate, mintravelfeedrate); | ||||||
| 
 | 
 | ||||||
|   /**
 |   /**
 | ||||||
|    * This part of the code calculates the total length of the movement.  |    * This part of the code calculates the total length of the movement. | ||||||
|    * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. |    * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. | ||||||
|    * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS |    * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS | ||||||
|    * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. |    * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. | ||||||
|    * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.  |    * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. | ||||||
|    * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. |    * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. | ||||||
|    */  |    */ | ||||||
|   #if ENABLED(COREXY) |   #if ENABLED(COREXY) | ||||||
|     float delta_mm[6]; |     float delta_mm[6]; | ||||||
|     delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; |     delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; | ||||||
| @ -717,7 +719,7 @@ float junction_deviation = 0.1; | |||||||
| 
 | 
 | ||||||
|   if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { |   if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { | ||||||
|     block->millimeters = fabs(delta_mm[E_AXIS]); |     block->millimeters = fabs(delta_mm[E_AXIS]); | ||||||
|   }  |   } | ||||||
|   else { |   else { | ||||||
|     block->millimeters = sqrt( |     block->millimeters = sqrt( | ||||||
|       #if ENABLED(COREXY) |       #if ENABLED(COREXY) | ||||||
| @ -729,7 +731,7 @@ float junction_deviation = 0.1; | |||||||
|       #endif |       #endif | ||||||
|     ); |     ); | ||||||
|   } |   } | ||||||
|   float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides 
 |   float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
 | ||||||
| 
 | 
 | ||||||
|   // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
 |   // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
 | ||||||
|   float inverse_second = feed_rate * inverse_millimeters; |   float inverse_second = feed_rate * inverse_millimeters; | ||||||
| @ -762,7 +764,7 @@ float junction_deviation = 0.1; | |||||||
| 
 | 
 | ||||||
|   #if ENABLED(FILAMENT_SENSOR) |   #if ENABLED(FILAMENT_SENSOR) | ||||||
|     //FMM update ring buffer used for delay with filament measurements
 |     //FMM update ring buffer used for delay with filament measurements
 | ||||||
|    | 
 | ||||||
|     if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) {  //only for extruder with filament sensor and if ring buffer is initialized
 |     if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) {  //only for extruder with filament sensor and if ring buffer is initialized
 | ||||||
| 
 | 
 | ||||||
|       const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10; |       const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10; | ||||||
| @ -803,7 +805,7 @@ float junction_deviation = 0.1; | |||||||
|     unsigned char direction_change = block->direction_bits ^ old_direction_bits; |     unsigned char direction_change = block->direction_bits ^ old_direction_bits; | ||||||
|     old_direction_bits = block->direction_bits; |     old_direction_bits = block->direction_bits; | ||||||
|     segment_time = lround((float)segment_time / speed_factor); |     segment_time = lround((float)segment_time / speed_factor); | ||||||
|    | 
 | ||||||
|     long xs0 = axis_segment_time[X_AXIS][0], |     long xs0 = axis_segment_time[X_AXIS][0], | ||||||
|          xs1 = axis_segment_time[X_AXIS][1], |          xs1 = axis_segment_time[X_AXIS][1], | ||||||
|          xs2 = axis_segment_time[X_AXIS][2], |          xs2 = axis_segment_time[X_AXIS][2], | ||||||
| @ -834,14 +836,14 @@ float junction_deviation = 0.1; | |||||||
|     } |     } | ||||||
|   #endif // XY_FREQUENCY_LIMIT
 |   #endif // XY_FREQUENCY_LIMIT
 | ||||||
| 
 | 
 | ||||||
|   // Correct the speed  
 |   // Correct the speed
 | ||||||
|   if (speed_factor < 1.0) { |   if (speed_factor < 1.0) { | ||||||
|     for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; |     for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; | ||||||
|     block->nominal_speed *= speed_factor; |     block->nominal_speed *= speed_factor; | ||||||
|     block->nominal_rate *= speed_factor; |     block->nominal_rate *= speed_factor; | ||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
|   // Compute and limit the acceleration rate for the trapezoid generator.  
 |   // Compute and limit the acceleration rate for the trapezoid generator.
 | ||||||
|   float steps_per_mm = block->step_event_count / block->millimeters; |   float steps_per_mm = block->step_event_count / block->millimeters; | ||||||
|   long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; |   long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; | ||||||
|   if (bsx == 0 && bsy == 0 && bsz == 0) { |   if (bsx == 0 && bsy == 0 && bsz == 0) { | ||||||
| @ -863,7 +865,7 @@ float junction_deviation = 0.1; | |||||||
|   if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps; |   if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps; | ||||||
|   if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps; |   if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps; | ||||||
|   if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps; |   if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps; | ||||||
|   | 
 | ||||||
|   block->acceleration_st = acc_st; |   block->acceleration_st = acc_st; | ||||||
|   block->acceleration = acc_st / steps_per_mm; |   block->acceleration = acc_st / steps_per_mm; | ||||||
|   block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); |   block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); | ||||||
| @ -911,7 +913,7 @@ float junction_deviation = 0.1; | |||||||
| 
 | 
 | ||||||
|   // Start with a safe speed
 |   // Start with a safe speed
 | ||||||
|   float vmax_junction = max_xy_jerk / 2; |   float vmax_junction = max_xy_jerk / 2; | ||||||
|   float vmax_junction_factor = 1.0;  |   float vmax_junction_factor = 1.0; | ||||||
|   float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; |   float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; | ||||||
|   float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; |   float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; | ||||||
|   if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); |   if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); | ||||||
| @ -949,7 +951,7 @@ float junction_deviation = 0.1; | |||||||
|   // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 |   // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 | ||||||
|   // the reverse and forward planners, the corresponding block junction speed will always be at the
 |   // the reverse and forward planners, the corresponding block junction speed will always be at the
 | ||||||
|   // the maximum junction speed and may always be ignored for any speed reduction checks.
 |   // the maximum junction speed and may always be ignored for any speed reduction checks.
 | ||||||
|   block->nominal_length_flag = (block->nominal_speed <= v_allowable);  |   block->nominal_length_flag = (block->nominal_speed <= v_allowable); | ||||||
|   block->recalculate_flag = true; // Always calculate trapezoid for new block
 |   block->recalculate_flag = true; // Always calculate trapezoid for new block
 | ||||||
| 
 | 
 | ||||||
|   // Update previous path unit_vector and nominal speed
 |   // Update previous path unit_vector and nominal speed
 | ||||||
| @ -1029,7 +1031,7 @@ float junction_deviation = 0.1; | |||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
| void plan_set_e_position(const float &e) { | void plan_set_e_position(const float &e) { | ||||||
|   position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);   |   position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); | ||||||
|   st_set_e_position(position[E_AXIS]); |   st_set_e_position(position[E_AXIS]); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -1185,6 +1185,9 @@ void digitalPotWrite(int address, int value) { | |||||||
|     SPI.transfer(value); |     SPI.transfer(value); | ||||||
|     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 |     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 | ||||||
|     //delay(10);
 |     //delay(10);
 | ||||||
|  |   #else | ||||||
|  |     UNUSED(address); | ||||||
|  |     UNUSED(value); | ||||||
|   #endif |   #endif | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| @ -1216,14 +1219,16 @@ void digipot_current(uint8_t driver, int current) { | |||||||
|   #if HAS_DIGIPOTSS |   #if HAS_DIGIPOTSS | ||||||
|     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; |     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; | ||||||
|     digitalPotWrite(digipot_ch[driver], current); |     digitalPotWrite(digipot_ch[driver], current); | ||||||
|   #endif |   #elif defined(MOTOR_CURRENT_PWM_XY_PIN) | ||||||
|   #ifdef MOTOR_CURRENT_PWM_XY_PIN |  | ||||||
|     switch(driver) { |     switch(driver) { | ||||||
|       case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; |       case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; | ||||||
|       case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; |       case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; | ||||||
|       case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; |       case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; | ||||||
|     } |     } | ||||||
|   #endif |   #else | ||||||
|  |     UNUSED(driver); | ||||||
|  |     UNUSED(current); | ||||||
|  | #endif | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void microstep_init() { | void microstep_init() { | ||||||
|  | |||||||
| @ -2,9 +2,9 @@ | |||||||
| #define ULTRALCD_H | #define ULTRALCD_H | ||||||
| 
 | 
 | ||||||
| #include "Marlin.h" | #include "Marlin.h" | ||||||
| #include "buzzer.h" |  | ||||||
| 
 |  | ||||||
| #if ENABLED(ULTRA_LCD) | #if ENABLED(ULTRA_LCD) | ||||||
|  |   #include "buzzer.h" | ||||||
|  | 
 | ||||||
|   int lcd_strlen(char *s); |   int lcd_strlen(char *s); | ||||||
|   int lcd_strlen_P(const char *s); |   int lcd_strlen_P(const char *s); | ||||||
|   void lcd_update(); |   void lcd_update(); | ||||||
| @ -105,8 +105,8 @@ | |||||||
|   FORCE_INLINE void lcd_update() {} |   FORCE_INLINE void lcd_update() {} | ||||||
|   FORCE_INLINE void lcd_init() {} |   FORCE_INLINE void lcd_init() {} | ||||||
|   FORCE_INLINE bool lcd_hasstatus() { return false; } |   FORCE_INLINE bool lcd_hasstatus() { return false; } | ||||||
|   FORCE_INLINE void lcd_setstatus(const char* message, const bool persist=false) {} |   FORCE_INLINE void lcd_setstatus(const char* message, const bool persist=false) {UNUSED(message); UNUSED(persist);} | ||||||
|   FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {} |   FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {UNUSED(message); UNUSED(level);} | ||||||
|   FORCE_INLINE void lcd_buttons_update() {} |   FORCE_INLINE void lcd_buttons_update() {} | ||||||
|   FORCE_INLINE void lcd_reset_alert_level() {} |   FORCE_INLINE void lcd_reset_alert_level() {} | ||||||
|   FORCE_INLINE bool lcd_detected(void) { return true; } |   FORCE_INLINE bool lcd_detected(void) { return true; } | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user