More data in UBL class, make it a static class
- Make all `unified_bed_leveling` data/methods static - Move some UBL-related variables into the class - Replace `map_[xy]_index_to_bed_location` with `mesh_index_to_[xy]pos`
This commit is contained in:
		
							parent
							
								
									edbc024d76
								
							
						
					
					
						commit
						4902fd4e95
					
				| @ -265,8 +265,8 @@ | ||||
|         location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
 | ||||
| 
 | ||||
|       if (location.x_index >= 0 && location.y_index >= 0) { | ||||
|         circle_x = ubl.map_x_index_to_bed_location(location.x_index); | ||||
|         circle_y = ubl.map_y_index_to_bed_location(location.y_index); | ||||
|         circle_x = ubl.mesh_index_to_xpos[location.x_index]; | ||||
|         circle_y = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|         // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
 | ||||
|         #ifdef DELTA | ||||
| @ -415,8 +415,8 @@ | ||||
|     for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { | ||||
|       for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { | ||||
|         if (!is_bit_set(circle_flags, i, j)) { | ||||
|           mx = ubl.map_x_index_to_bed_location(i);  // We found a circle that needs to be printed
 | ||||
|           my = ubl.map_y_index_to_bed_location(j); | ||||
|           mx = ubl.mesh_index_to_xpos[i];  // We found a circle that needs to be printed
 | ||||
|           my = ubl.mesh_index_to_ypos[j]; | ||||
| 
 | ||||
|           dx = X - mx;        // Get the distance to this intersection
 | ||||
|           dy = Y - my; | ||||
| @ -461,11 +461,11 @@ | ||||
|               // We found two circles that need a horizontal line to connect them
 | ||||
|               // Print it!
 | ||||
|               //
 | ||||
|               sx = ubl.map_x_index_to_bed_location(i); | ||||
|               sx = ubl.mesh_index_to_xpos[i]; | ||||
|               sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
 | ||||
|               sy = ubl.map_y_index_to_bed_location(j); | ||||
|               sy = ubl.mesh_index_to_ypos[j]; | ||||
| 
 | ||||
|               ex = ubl.map_x_index_to_bed_location(i + 1); | ||||
|               ex = ubl.mesh_index_to_xpos[i + 1]; | ||||
|               ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
 | ||||
|               ey = sy; | ||||
| 
 | ||||
| @ -498,12 +498,12 @@ | ||||
|                 // We found two circles that need a vertical line to connect them
 | ||||
|                 // Print it!
 | ||||
|                 //
 | ||||
|                 sx = ubl.map_x_index_to_bed_location(i); | ||||
|                 sy = ubl.map_y_index_to_bed_location(j); | ||||
|                 sx = ubl.mesh_index_to_xpos[i]; | ||||
|                 sy = ubl.mesh_index_to_ypos[j]; | ||||
|                 sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
 | ||||
| 
 | ||||
|                 ex = sx; | ||||
|                 ey = ubl.map_y_index_to_bed_location(j + 1); | ||||
|                 ey = ubl.mesh_index_to_ypos[j + 1]; | ||||
|                 ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
 | ||||
| 
 | ||||
|                 sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);             // This keeps us from bumping the endstops
 | ||||
|  | ||||
| @ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0); | ||||
| void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); | ||||
| void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); | ||||
| 
 | ||||
| #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) | ||||
|   bool axis_unhomed_error(const bool x, const bool y, const bool z); | ||||
| #endif | ||||
| 
 | ||||
| #endif //MARLIN_H
 | ||||
|  | ||||
| @ -3221,7 +3221,7 @@ inline void gcode_G4() { | ||||
|    */ | ||||
|   inline void gcode_G12() { | ||||
|     // Don't allow nozzle cleaning without homing first
 | ||||
|     if (axis_unhomed_error(true, true, true)) { return; } | ||||
|     if (axis_unhomed_error(true, true, true)) return; | ||||
| 
 | ||||
|     const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0, | ||||
|                   strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES, | ||||
|  | ||||
							
								
								
									
										452
									
								
								Marlin/UBL.h
									
									
									
									
									
								
							
							
						
						
									
										452
									
								
								Marlin/UBL.h
									
									
									
									
									
								
							| @ -39,7 +39,6 @@ | ||||
| 
 | ||||
|     enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; | ||||
| 
 | ||||
|     bool axis_unhomed_error(bool, bool, bool); | ||||
|     void dump(char * const str, const float &f); | ||||
|     bool ubl_lcd_clicked(); | ||||
|     void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); | ||||
| @ -78,275 +77,273 @@ | ||||
| 
 | ||||
|     enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; | ||||
| 
 | ||||
|     #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) | ||||
|     #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) | ||||
|     #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1)) | ||||
|     #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1)) | ||||
| 
 | ||||
|     extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
 | ||||
|     extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
 | ||||
|     typedef struct { | ||||
|       bool active = false; | ||||
|       float z_offset = 0.0; | ||||
|       int8_t eeprom_storage_slot = -1, | ||||
|              n_x = UBL_MESH_NUM_X_POINTS, | ||||
|              n_y = UBL_MESH_NUM_Y_POINTS; | ||||
| 
 | ||||
|       float mesh_x_min = UBL_MESH_MIN_X, | ||||
|             mesh_y_min = UBL_MESH_MIN_Y, | ||||
|             mesh_x_max = UBL_MESH_MAX_X, | ||||
|             mesh_y_max = UBL_MESH_MAX_Y, | ||||
|             mesh_x_dist = MESH_X_DIST, | ||||
|             mesh_y_dist = MESH_Y_DIST; | ||||
| 
 | ||||
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
|         float g29_correction_fade_height = 10.0, | ||||
|               g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
 | ||||
|                                                        // so keep this value and its reciprocal.
 | ||||
|       #else | ||||
|         const float g29_correction_fade_height = 10.0, | ||||
|                     g29_fade_height_multiplier = 1.0 / 10.0; | ||||
|       #endif | ||||
| 
 | ||||
|       // If you change this struct, adjust TOTAL_STRUCT_SIZE
 | ||||
| 
 | ||||
|       #define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
 | ||||
| 
 | ||||
|       // padding provides space to add state variables without
 | ||||
|       // changing the location of data structures in the EEPROM.
 | ||||
|       // This is for compatibility with future versions to keep
 | ||||
|       // users from having to regenerate their mesh data.
 | ||||
|       unsigned char padding[64 - TOTAL_STRUCT_SIZE]; | ||||
| 
 | ||||
|     } ubl_state; | ||||
| 
 | ||||
|     class unified_bed_leveling { | ||||
|       private: | ||||
| 
 | ||||
|       float last_specified_z, | ||||
|             fade_scaling_factor_for_current_height; | ||||
|         static float last_specified_z, | ||||
|                      fade_scaling_factor_for_current_height; | ||||
| 
 | ||||
|       public: | ||||
| 
 | ||||
|       float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; | ||||
|         static ubl_state state, pre_initialized; | ||||
| 
 | ||||
|       bool g26_debug_flag = false, | ||||
|            has_control_of_lcd_panel = false; | ||||
|         static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], | ||||
|                      mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
 | ||||
|                      mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1]; | ||||
| 
 | ||||
|       int8_t eeprom_start = -1; | ||||
|         static bool g26_debug_flag, | ||||
|                     has_control_of_lcd_panel; | ||||
| 
 | ||||
|       volatile int encoder_diff; // Volatile because it's changed at interrupt time.
 | ||||
|         static int8_t eeprom_start; | ||||
| 
 | ||||
|       struct ubl_state { | ||||
|         bool active = false; | ||||
|         float z_offset = 0.0; | ||||
|         int8_t eeprom_storage_slot = -1, | ||||
|                n_x = UBL_MESH_NUM_X_POINTS, | ||||
|                n_y = UBL_MESH_NUM_Y_POINTS; | ||||
|         static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
 | ||||
| 
 | ||||
|         float mesh_x_min = UBL_MESH_MIN_X, | ||||
|               mesh_y_min = UBL_MESH_MIN_Y, | ||||
|               mesh_x_max = UBL_MESH_MAX_X, | ||||
|               mesh_y_max = UBL_MESH_MAX_Y, | ||||
|               mesh_x_dist = MESH_X_DIST, | ||||
|               mesh_y_dist = MESH_Y_DIST; | ||||
|         unified_bed_leveling(); | ||||
| 
 | ||||
|         #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
|           float g29_correction_fade_height = 10.0, | ||||
|                 g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
 | ||||
|                                                          // so keep this value and its reciprocal.
 | ||||
|         #else | ||||
|           const float g29_correction_fade_height = 10.0, | ||||
|                       g29_fade_height_multiplier = 1.0 / 10.0; | ||||
|         #endif | ||||
|         static void display_map(const int); | ||||
| 
 | ||||
|         // If you change this struct, adjust TOTAL_STRUCT_SIZE
 | ||||
|         static void reset(); | ||||
|         static void invalidate(); | ||||
| 
 | ||||
|         #define TOTAL_STRUCT_SIZE 43 // Total size of the above fields
 | ||||
|         static void store_state(); | ||||
|         static void load_state(); | ||||
|         static void store_mesh(const int16_t); | ||||
|         static void load_mesh(const int16_t); | ||||
| 
 | ||||
|         // padding provides space to add state variables without
 | ||||
|         // changing the location of data structures in the EEPROM.
 | ||||
|         // This is for compatibility with future versions to keep
 | ||||
|         // users from having to regenerate their mesh data.
 | ||||
|         unsigned char padding[64 - TOTAL_STRUCT_SIZE]; | ||||
|         static bool sanity_check(); | ||||
| 
 | ||||
|       } state, pre_initialized; | ||||
|         static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } | ||||
| 
 | ||||
|       unified_bed_leveling(); | ||||
|         static int8_t get_cell_index_x(const float &x) { | ||||
|           const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); | ||||
|           return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1);   // -1 is appropriate if we want all movement to the X_MAX
 | ||||
|         }                                                         // position. But with this defined this way, it is possible
 | ||||
|                                                                   // to extrapolate off of this point even further out. Probably
 | ||||
|                                                                   // that is OK because something else should be keeping that from
 | ||||
|                                                                   // happening and should not be worried about at this level.
 | ||||
|         static int8_t get_cell_index_y(const float &y) { | ||||
|           const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); | ||||
|           return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1);   // -1 is appropriate if we want all movement to the Y_MAX
 | ||||
|         }                                                         // position. But with this defined this way, it is possible
 | ||||
|                                                                   // to extrapolate off of this point even further out. Probably
 | ||||
|                                                                   // that is OK because something else should be keeping that from
 | ||||
|                                                                   // happening and should not be worried about at this level.
 | ||||
| 
 | ||||
|       void display_map(const int); | ||||
| 
 | ||||
|       void reset(); | ||||
|       void invalidate(); | ||||
| 
 | ||||
|       void store_state(); | ||||
|       void load_state(); | ||||
|       void store_mesh(const int16_t); | ||||
|       void load_mesh(const int16_t); | ||||
| 
 | ||||
|       bool sanity_check(); | ||||
| 
 | ||||
|       FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); }; | ||||
|       FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); }; | ||||
| 
 | ||||
|       FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } | ||||
| 
 | ||||
|       static int8_t get_cell_index_x(const float &x) { | ||||
|         const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); | ||||
|         return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1);   // -1 is appropriate if we want all movement to the X_MAX
 | ||||
|       }                                                         // position. But with this defined this way, it is possible
 | ||||
|                                                                 // to extrapolate off of this point even further out. Probably
 | ||||
|                                                                 // that is OK because something else should be keeping that from
 | ||||
|                                                                 // happening and should not be worried about at this level.
 | ||||
|       static int8_t get_cell_index_y(const float &y) { | ||||
|         const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); | ||||
|         return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1);   // -1 is appropriate if we want all movement to the Y_MAX
 | ||||
|       }                                                         // position. But with this defined this way, it is possible
 | ||||
|                                                                 // to extrapolate off of this point even further out. Probably
 | ||||
|                                                                 // that is OK because something else should be keeping that from
 | ||||
|                                                                 // happening and should not be worried about at this level.
 | ||||
| 
 | ||||
|       static int8_t find_closest_x_index(const float &x) { | ||||
|         const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); | ||||
|         return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; | ||||
|       } | ||||
| 
 | ||||
|       static int8_t find_closest_y_index(const float &y) { | ||||
|         const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); | ||||
|         return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; | ||||
|       } | ||||
| 
 | ||||
|       /**
 | ||||
|        *                           z2   --| | ||||
|        *                 z0        |      | | ||||
|        *                  |        |      + (z2-z1) | ||||
|        *   z1             |        |      | | ||||
|        * ---+-------------+--------+--  --| | ||||
|        *   a1            a0        a2 | ||||
|        *    |<---delta_a---------->| | ||||
|        * | ||||
|        *  calc_z0 is the basis for all the Mesh Based correction. It is used to | ||||
|        *  find the expected Z Height at a position between two known Z-Height locations. | ||||
|        * | ||||
|        *  It is fairly expensive with its 4 floating point additions and 2 floating point | ||||
|        *  multiplications. | ||||
|        */ | ||||
|       static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|         const float delta_z = (z2 - z1), | ||||
|                     delta_a = (a0 - a1) / (a2 - a1); | ||||
|         return z1 + delta_a * delta_z; | ||||
|       } | ||||
| 
 | ||||
|       /**
 | ||||
|        * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes | ||||
|        * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory | ||||
|        * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling | ||||
|        * the get_z_correction_along_vertical_mesh_line_at_specific_X routine  will already have | ||||
|        * the X index of the x0 intersection available and we don't want to perform any extra floating | ||||
|        * point operations. | ||||
|        */ | ||||
|       inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { | ||||
|         if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { | ||||
|           SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); | ||||
|           SERIAL_ECHOPAIR(",x1_i=", x1_i); | ||||
|           SERIAL_ECHOPAIR(",yi=", yi); | ||||
|           SERIAL_CHAR(')'); | ||||
|           SERIAL_EOL; | ||||
|           return NAN; | ||||
|         static int8_t find_closest_x_index(const float &x) { | ||||
|           const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); | ||||
|           return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; | ||||
|         } | ||||
| 
 | ||||
|         const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)), | ||||
|                     z1 = z_values[x1_i][yi], | ||||
|                     z2 = z_values[x1_i + 1][yi], | ||||
|                     dz = (z2 - z1); | ||||
| 
 | ||||
|         return z1 + xratio * dz; | ||||
|       } | ||||
| 
 | ||||
|       //
 | ||||
|       // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
 | ||||
|       //
 | ||||
|       inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { | ||||
|         if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { | ||||
|           SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); | ||||
|           SERIAL_ECHOPAIR(", x1_i=", xi); | ||||
|           SERIAL_ECHOPAIR(", yi=", y1_i); | ||||
|           SERIAL_CHAR(')'); | ||||
|           SERIAL_EOL; | ||||
|           return NAN; | ||||
|         static int8_t find_closest_y_index(const float &y) { | ||||
|           const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); | ||||
|           return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; | ||||
|         } | ||||
| 
 | ||||
|         const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), | ||||
|                     z1 = z_values[xi][y1_i], | ||||
|                     z2 = z_values[xi][y1_i + 1], | ||||
|                     dz = (z2 - z1); | ||||
| 
 | ||||
|         return z1 + yratio * dz; | ||||
|       } | ||||
| 
 | ||||
|       /**
 | ||||
|        * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first | ||||
|        * does a linear interpolation along both of the bounding X-Mesh-Lines to find the | ||||
|        * Z-Height at both ends. Then it does a linear interpolation of these heights based | ||||
|        * on the Y position within the cell. | ||||
|        */ | ||||
|       float get_z_correction(const float &x0, const float &y0) const { | ||||
|         const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), | ||||
|                      cy = get_cell_index_y(RAW_Y_POSITION(y0)); | ||||
| 
 | ||||
|         if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { | ||||
| 
 | ||||
|           SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); | ||||
|           SERIAL_ECHOPAIR(", y0=", y0); | ||||
|           SERIAL_CHAR(')'); | ||||
|           SERIAL_EOL; | ||||
| 
 | ||||
|           #if ENABLED(ULTRA_LCD) | ||||
|             strcpy(lcd_status_message, "get_z_correction() indexes out of range."); | ||||
|             lcd_quick_feedback(); | ||||
|           #endif | ||||
|           return 0.0; // this used to return state.z_offset
 | ||||
|         /**
 | ||||
|          *                           z2   --| | ||||
|          *                 z0        |      | | ||||
|          *                  |        |      + (z2-z1) | ||||
|          *   z1             |        |      | | ||||
|          * ---+-------------+--------+--  --| | ||||
|          *   a1            a0        a2 | ||||
|          *    |<---delta_a---------->| | ||||
|          * | ||||
|          *  calc_z0 is the basis for all the Mesh Based correction. It is used to | ||||
|          *  find the expected Z Height at a position between two known Z-Height locations. | ||||
|          * | ||||
|          *  It is fairly expensive with its 4 floating point additions and 2 floating point | ||||
|          *  multiplications. | ||||
|          */ | ||||
|         static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|           const float delta_z = (z2 - z1), | ||||
|                       delta_a = (a0 - a1) / (a2 - a1); | ||||
|           return z1 + delta_a * delta_z; | ||||
|         } | ||||
| 
 | ||||
|         const float z1 = calc_z0(RAW_X_POSITION(x0), | ||||
|                       map_x_index_to_bed_location(cx), z_values[cx][cy], | ||||
|                       map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]), | ||||
|                     z2 = calc_z0(RAW_X_POSITION(x0), | ||||
|                       map_x_index_to_bed_location(cx), z_values[cx][cy + 1], | ||||
|                       map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]); | ||||
|               float z0 = calc_z0(RAW_Y_POSITION(y0), | ||||
|                   map_y_index_to_bed_location(cy), z1, | ||||
|                   map_y_index_to_bed_location(cy + 1), z2); | ||||
| 
 | ||||
|         #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|           if (DEBUGGING(MESH_ADJUST)) { | ||||
|             SERIAL_ECHOPAIR(" raw get_z_correction(", x0); | ||||
|             SERIAL_CHAR(',') | ||||
|             SERIAL_ECHO(y0); | ||||
|             SERIAL_ECHOPGM(") = "); | ||||
|             SERIAL_ECHO_F(z0, 6); | ||||
|           } | ||||
|         #endif | ||||
| 
 | ||||
|         #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|           if (DEBUGGING(MESH_ADJUST)) { | ||||
|             SERIAL_ECHOPGM(" >>>---> "); | ||||
|             SERIAL_ECHO_F(z0, 6); | ||||
|         /**
 | ||||
|          * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes | ||||
|          * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory | ||||
|          * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling | ||||
|          * the get_z_correction_along_vertical_mesh_line_at_specific_X routine  will already have | ||||
|          * the X index of the x0 intersection available and we don't want to perform any extra floating | ||||
|          * point operations. | ||||
|          */ | ||||
|         static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { | ||||
|           if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); | ||||
|             SERIAL_ECHOPAIR(",x1_i=", x1_i); | ||||
|             SERIAL_ECHOPAIR(",yi=", yi); | ||||
|             SERIAL_CHAR(')'); | ||||
|             SERIAL_EOL; | ||||
|             return NAN; | ||||
|           } | ||||
|         #endif | ||||
| 
 | ||||
|         if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
 | ||||
|           z0 = 0.0;      // in ubl.z_values[][] and propagate through the
 | ||||
|                          // calculations. If our correction is NAN, we throw it out
 | ||||
|                          // because part of the Mesh is undefined and we don't have the
 | ||||
|                          // information we need to complete the height correction.
 | ||||
|           const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), | ||||
|                       z1 = z_values[x1_i][yi], | ||||
|                       z2 = z_values[x1_i + 1][yi], | ||||
|                       dz = (z2 - z1); | ||||
| 
 | ||||
|           return z1 + xratio * dz; | ||||
|         } | ||||
| 
 | ||||
|         //
 | ||||
|         // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
 | ||||
|         //
 | ||||
|         static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { | ||||
|           if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); | ||||
|             SERIAL_ECHOPAIR(", x1_i=", xi); | ||||
|             SERIAL_ECHOPAIR(", yi=", y1_i); | ||||
|             SERIAL_CHAR(')'); | ||||
|             SERIAL_EOL; | ||||
|             return NAN; | ||||
|           } | ||||
| 
 | ||||
|           const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), | ||||
|                       z1 = z_values[xi][y1_i], | ||||
|                       z2 = z_values[xi][y1_i + 1], | ||||
|                       dz = (z2 - z1); | ||||
| 
 | ||||
|           return z1 + yratio * dz; | ||||
|         } | ||||
| 
 | ||||
|         /**
 | ||||
|          * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first | ||||
|          * does a linear interpolation along both of the bounding X-Mesh-Lines to find the | ||||
|          * Z-Height at both ends. Then it does a linear interpolation of these heights based | ||||
|          * on the Y position within the cell. | ||||
|          */ | ||||
|         static float get_z_correction(const float &x0, const float &y0) { | ||||
|           const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), | ||||
|                        cy = get_cell_index_y(RAW_Y_POSITION(y0)); | ||||
| 
 | ||||
|           if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { | ||||
| 
 | ||||
|             SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); | ||||
|             SERIAL_ECHOPAIR(", y0=", y0); | ||||
|             SERIAL_CHAR(')'); | ||||
|             SERIAL_EOL; | ||||
| 
 | ||||
|             #if ENABLED(ULTRA_LCD) | ||||
|               strcpy(lcd_status_message, "get_z_correction() indexes out of range."); | ||||
|               lcd_quick_feedback(); | ||||
|             #endif | ||||
|             return 0.0; // this used to return state.z_offset
 | ||||
|           } | ||||
| 
 | ||||
|           const float z1 = calc_z0(RAW_X_POSITION(x0), | ||||
|                         mesh_index_to_xpos[cx], z_values[cx][cy], | ||||
|                         mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), | ||||
|                       z2 = calc_z0(RAW_X_POSITION(x0), | ||||
|                         mesh_index_to_xpos[cx], z_values[cx][cy + 1], | ||||
|                         mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); | ||||
|                 float z0 = calc_z0(RAW_Y_POSITION(y0), | ||||
|                     mesh_index_to_ypos[cy], z1, | ||||
|                     mesh_index_to_ypos[cy + 1], z2); | ||||
| 
 | ||||
|           #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|             if (DEBUGGING(MESH_ADJUST)) { | ||||
|               SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", x0); | ||||
|               SERIAL_CHAR(','); | ||||
|               SERIAL_ECHOPAIR(" raw get_z_correction(", x0); | ||||
|               SERIAL_CHAR(',') | ||||
|               SERIAL_ECHO(y0); | ||||
|               SERIAL_CHAR(')'); | ||||
|               SERIAL_ECHOPGM(") = "); | ||||
|               SERIAL_ECHO_F(z0, 6); | ||||
|             } | ||||
|           #endif | ||||
| 
 | ||||
|           #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|             if (DEBUGGING(MESH_ADJUST)) { | ||||
|               SERIAL_ECHOPGM(" >>>---> "); | ||||
|               SERIAL_ECHO_F(z0, 6); | ||||
|               SERIAL_EOL; | ||||
|             } | ||||
|           #endif | ||||
|         } | ||||
|         return z0; // there used to be a +state.z_offset on this line
 | ||||
|       } | ||||
| 
 | ||||
|       /**
 | ||||
|        * This routine is used to scale the Z correction depending upon the current nozzle height. It is | ||||
|        * optimized for speed. It avoids floating point operations by checking if the requested scaling | ||||
|        * factor is going to be the same as the last time the function calculated a value. If so, it just | ||||
|        * returns it. | ||||
|        * | ||||
|        * It returns a scaling factor of 1.0 if UBL is inactive. | ||||
|        * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height' | ||||
|        */ | ||||
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
|           if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
 | ||||
|             z0 = 0.0;      // in ubl.z_values[][] and propagate through the
 | ||||
|                            // calculations. If our correction is NAN, we throw it out
 | ||||
|                            // because part of the Mesh is undefined and we don't have the
 | ||||
|                            // information we need to complete the height correction.
 | ||||
| 
 | ||||
|         FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { | ||||
|           const float rz = RAW_Z_POSITION(lz); | ||||
|           if (last_specified_z != rz) { | ||||
|             last_specified_z = rz; | ||||
|             fade_scaling_factor_for_current_height = | ||||
|               state.active && rz < state.g29_correction_fade_height | ||||
|                 ? 1.0 - (rz * state.g29_fade_height_multiplier) | ||||
|                 : 0.0; | ||||
|             #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|               if (DEBUGGING(MESH_ADJUST)) { | ||||
|                 SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", x0); | ||||
|                 SERIAL_CHAR(','); | ||||
|                 SERIAL_ECHO(y0); | ||||
|                 SERIAL_CHAR(')'); | ||||
|                 SERIAL_EOL; | ||||
|               } | ||||
|             #endif | ||||
|           } | ||||
|           return fade_scaling_factor_for_current_height; | ||||
|           return z0; // there used to be a +state.z_offset on this line
 | ||||
|         } | ||||
| 
 | ||||
|       #else | ||||
|         /**
 | ||||
|          * This routine is used to scale the Z correction depending upon the current nozzle height. It is | ||||
|          * optimized for speed. It avoids floating point operations by checking if the requested scaling | ||||
|          * factor is going to be the same as the last time the function calculated a value. If so, it just | ||||
|          * returns it. | ||||
|          * | ||||
|          * It returns a scaling factor of 1.0 if UBL is inactive. | ||||
|          * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height' | ||||
|          */ | ||||
|         #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||
| 
 | ||||
|         static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } | ||||
|           FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { | ||||
|             const float rz = RAW_Z_POSITION(lz); | ||||
|             if (last_specified_z != rz) { | ||||
|               last_specified_z = rz; | ||||
|               fade_scaling_factor_for_current_height = | ||||
|                 state.active && rz < state.g29_correction_fade_height | ||||
|                   ? 1.0 - (rz * state.g29_fade_height_multiplier) | ||||
|                   : 0.0; | ||||
|             } | ||||
|             return fade_scaling_factor_for_current_height; | ||||
|           } | ||||
| 
 | ||||
|       #endif | ||||
|         #else | ||||
| 
 | ||||
|           static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } | ||||
| 
 | ||||
|         #endif | ||||
| 
 | ||||
|     }; // class unified_bed_leveling
 | ||||
| 
 | ||||
| @ -355,5 +352,4 @@ | ||||
|     #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) | ||||
| 
 | ||||
|   #endif // AUTO_BED_LEVELING_UBL
 | ||||
| 
 | ||||
| #endif // UNIFIED_BED_LEVELING_H
 | ||||
|  | ||||
| @ -57,23 +57,26 @@ | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * These variables used to be declared inside the unified_bed_leveling class. We are going to | ||||
|    * still declare them within the .cpp file for bed leveling. But there is only one instance of | ||||
|    * the bed leveling object and we can get rid of a level of inderection by not making them | ||||
|    * 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be | ||||
|    * moved back inside the bed leveling class. | ||||
|    */ | ||||
|   float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
 | ||||
|         mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
 | ||||
|   ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized; | ||||
| 
 | ||||
|   float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], | ||||
|         unified_bed_leveling::last_specified_z, | ||||
|         unified_bed_leveling::fade_scaling_factor_for_current_height, | ||||
|         unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
 | ||||
|         unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1]; | ||||
| 
 | ||||
|   bool unified_bed_leveling::g26_debug_flag = false, | ||||
|        unified_bed_leveling::has_control_of_lcd_panel = false; | ||||
| 
 | ||||
|   int8_t unified_bed_leveling::eeprom_start = -1; | ||||
| 
 | ||||
|   volatile int unified_bed_leveling::encoder_diff; | ||||
| 
 | ||||
|   unified_bed_leveling::unified_bed_leveling() { | ||||
|     for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++)  // We go one past what we expect to ever need for safety
 | ||||
|       mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); | ||||
| 
 | ||||
|     for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++)  // We go one past what we expect to ever need for safety
 | ||||
|       mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i); | ||||
| 
 | ||||
|     for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++) | ||||
|       mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST); | ||||
|     for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++) | ||||
|       mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST); | ||||
|     reset(); | ||||
|   } | ||||
| 
 | ||||
| @ -161,9 +164,6 @@ | ||||
|   } | ||||
| 
 | ||||
|   void unified_bed_leveling::invalidate() { | ||||
|     print_hex_word((uint16_t)this); | ||||
|     SERIAL_EOL; | ||||
| 
 | ||||
|     state.active = false; | ||||
|     state.z_offset = 0; | ||||
|     for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++) | ||||
|  | ||||
| @ -750,8 +750,8 @@ | ||||
|       location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest );  // the '1' says we want the location to be relative to the probe
 | ||||
|       if (location.x_index >= 0 && location.y_index >= 0) { | ||||
| 
 | ||||
|         const float rawx = ubl.map_x_index_to_bed_location(location.x_index), | ||||
|                     rawy = ubl.map_y_index_to_bed_location(location.y_index); | ||||
|         const float rawx = ubl.mesh_index_to_xpos[location.x_index], | ||||
|                     rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|         // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|         if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { | ||||
| @ -900,8 +900,8 @@ | ||||
|       // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
 | ||||
|       if (location.x_index < 0 && location.y_index < 0) continue; | ||||
| 
 | ||||
|       const float rawx = ubl.map_x_index_to_bed_location(location.x_index), | ||||
|                   rawy = ubl.map_y_index_to_bed_location(location.y_index); | ||||
|       const float rawx = ubl.mesh_index_to_xpos[location.x_index], | ||||
|                   rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|       if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { | ||||
| @ -1137,7 +1137,7 @@ | ||||
| 
 | ||||
|     SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); | ||||
|     for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { | ||||
|       SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1); | ||||
|       SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1); | ||||
|       SERIAL_PROTOCOLPGM("  "); | ||||
|       safe_delay(50); | ||||
|     } | ||||
| @ -1145,7 +1145,7 @@ | ||||
| 
 | ||||
|     SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); | ||||
|     for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { | ||||
|       SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1); | ||||
|       SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1); | ||||
|       SERIAL_PROTOCOLPGM("  "); | ||||
|       safe_delay(50); | ||||
|     } | ||||
| @ -1283,8 +1283,8 @@ | ||||
| 
 | ||||
|           // We only get here if we found a Mesh Point of the specified type
 | ||||
| 
 | ||||
|           const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
 | ||||
|                       rawy = ubl.map_y_index_to_bed_location(j); | ||||
|           const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
 | ||||
|                       rawy = ubl.mesh_index_to_ypos[j]; | ||||
| 
 | ||||
|           // If using the probe as the reference there are some unreachable locations.
 | ||||
|           // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
 | ||||
| @ -1350,8 +1350,8 @@ | ||||
|       bit_clear(not_done, location.x_index, location.y_index);  // Mark this location as 'adjusted' so we will find a
 | ||||
|                                                                 // different location the next time through the loop
 | ||||
| 
 | ||||
|       const float rawx = ubl.map_x_index_to_bed_location(location.x_index), | ||||
|                   rawy = ubl.map_y_index_to_bed_location(location.y_index); | ||||
|       const float rawx = ubl.mesh_index_to_xpos[location.x_index], | ||||
|                   rawy = ubl.mesh_index_to_ypos[location.y_index]; | ||||
| 
 | ||||
|       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
 | ||||
|       if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
 | ||||
|  | ||||
| @ -167,16 +167,16 @@ | ||||
|        * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. | ||||
|        */ | ||||
| 
 | ||||
|       const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), | ||||
|                   z1 = z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio * | ||||
|                       (z_values[cell_dest_xi + 1][cell_dest_yi    ] - z_values[cell_dest_xi][cell_dest_yi    ]), | ||||
|                   z2 = z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio * | ||||
|                       (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); | ||||
|       const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), | ||||
|                   z1 = ubl.z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio * | ||||
|                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi    ] - ubl.z_values[cell_dest_xi][cell_dest_yi    ]), | ||||
|                   z2 = ubl.z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio * | ||||
|                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]); | ||||
| 
 | ||||
|       // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
 | ||||
|       // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
 | ||||
| 
 | ||||
|       const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); | ||||
|       const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); | ||||
| 
 | ||||
|       float z0 = z1 + (z2 - z1) * yratio; | ||||
| 
 | ||||
| @ -274,7 +274,7 @@ | ||||
|       current_yi += down_flag;  // Line is heading down, we just want to go to the bottom
 | ||||
|       while (current_yi != cell_dest_yi + down_flag) { | ||||
|         current_yi += dyi; | ||||
|         const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); | ||||
|         const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * inf_m_flag? the slope of the line is infinite, we won't do the calculations | ||||
| @ -316,7 +316,7 @@ | ||||
|          */ | ||||
|         if (isnan(z0)) z0 = 0.0; | ||||
| 
 | ||||
|         const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); | ||||
|         const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Without this check, it is possible for the algorithm to generate a zero length move in the case | ||||
| @ -365,7 +365,7 @@ | ||||
|                                 // edge of this cell for the first move.
 | ||||
|       while (current_xi != cell_dest_xi + left_flag) { | ||||
|         current_xi += dxi; | ||||
|         const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]), | ||||
|         const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), | ||||
|                     y = m * next_mesh_line_x + c;   // Calculate X at the next Y mesh line
 | ||||
| 
 | ||||
|         float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); | ||||
| @ -401,7 +401,7 @@ | ||||
|          */ | ||||
|         if (isnan(z0)) z0 = 0.0; | ||||
| 
 | ||||
|         const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]); | ||||
|         const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]); | ||||
| 
 | ||||
|         /**
 | ||||
|          * Without this check, it is possible for the algorithm to generate a zero length move in the case | ||||
| @ -451,8 +451,8 @@ | ||||
| 
 | ||||
|     while (xi_cnt > 0 || yi_cnt > 0) { | ||||
| 
 | ||||
|       const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]), | ||||
|                   next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]), | ||||
|       const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), | ||||
|                   next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), | ||||
|                   y = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
 | ||||
|                   x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line    (we don't have to worry
 | ||||
|                                                   // about m being equal to 0.0  If this was the case, we would have
 | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user