Apply static to Planner class

2.0.x
Scott Lahteine 9 years ago
parent 7ba8f2dbc3
commit 470d5ac09f

@ -71,6 +71,64 @@
Planner planner;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
volatile uint8_t Planner::block_buffer_tail = 0;
float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float Planner::axis_steps_per_unit[NUM_AXIS];
unsigned long Planner::axis_steps_per_sqr_second[NUM_AXIS];
unsigned long Planner::max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
millis_t Planner::min_segment_time;
float Planner::min_feedrate;
float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float Planner::max_xy_jerk; // The largest speed change requiring no acceleration
float Planner::max_z_jerk;
float Planner::max_e_jerk;
float Planner::min_travel_feedrate;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(AUTOTEMP)
float Planner::autotemp_max = 250;
float Planner::autotemp_min = 210;
float Planner::autotemp_factor = 0.1;
bool Planner::autotemp_enabled = false;
#endif
// private:
long Planner::position[NUM_AXIS] = { 0 };
float Planner::previous_speed[NUM_AXIS];
float Planner::previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Old direction bits. Used for speed calculations
unsigned char Planner::old_direction_bits = 0;
// Segment times (in µs). Used for speed calculations
long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
#endif
/**
* Class and Instance Methods
*/
Planner::Planner() {
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
bed_level_matrix.set_to_identity();

@ -108,27 +108,27 @@ class Planner {
/**
* A ring buffer of moves described in steps
*/
block_t block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t block_buffer_head = 0; // Index of the next block to be pushed
volatile uint8_t block_buffer_tail = 0;
static block_t block_buffer[BLOCK_BUFFER_SIZE];
static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
static volatile uint8_t block_buffer_tail;
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float axis_steps_per_unit[NUM_AXIS];
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
static float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
static float axis_steps_per_unit[NUM_AXIS];
static unsigned long axis_steps_per_sqr_second[NUM_AXIS];
static unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
millis_t min_segment_time;
float min_feedrate;
float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float max_xy_jerk; // The largest speed change requiring no acceleration
float max_z_jerk;
float max_e_jerk;
float min_travel_feedrate;
static millis_t min_segment_time;
static float min_feedrate;
static float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
static float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
static float max_xy_jerk; // The largest speed change requiring no acceleration
static float max_z_jerk;
static float max_e_jerk;
static float min_travel_feedrate;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif
private:
@ -137,49 +137,57 @@ class Planner {
* The current position of the tool in absolute steps
* Reclculated if any axis_steps_per_unit are changed by gcode
*/
long position[NUM_AXIS] = { 0 };
static long position[NUM_AXIS];
/**
* Speed of previous path line segment
*/
float previous_speed[NUM_AXIS];
static float previous_speed[NUM_AXIS];
/**
* Nominal speed of previous path line segment
*/
float previous_nominal_speed;
static float previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
static uint8_t g_uc_extruder_last_move[EXTRUDERS];
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
#define MAX_FREQ_TIME long(1000000.0/XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits = 0;
static unsigned char old_direction_bits;
// Segment times (in µs). Used for speed calculations
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
static long axis_segment_time[2][3];
#endif
public:
/**
* Instance Methods
*/
Planner();
void init();
void reset_acceleration_rates();
/**
* Static (class) Methods
*/
static void reset_acceleration_rates();
// Manage fans, paste pressure, etc.
void check_axes_activity();
static void check_axes_activity();
/**
* Number of moves currently in the planner
*/
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
static FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
@ -187,7 +195,7 @@ class Planner {
/**
* The corrected position, applying the bed level matrix
*/
vector_3 adjusted_position();
static vector_3 adjusted_position();
#endif
/**
@ -197,7 +205,7 @@ class Planner {
* feed_rate - (target) speed of the move
* extruder - target extruder
*/
void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
static void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
/**
* Set the planner.position and individual stepper positions.
@ -208,30 +216,30 @@ class Planner {
*
* Clears previous speed values.
*/
void set_position(float x, float y, float z, const float& e);
static void set_position(float x, float y, float z, const float& e);
#else
void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
void set_position(const float& x, const float& y, const float& z, const float& e);
static void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
static void set_position(const float& x, const float& y, const float& z, const float& e);
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
/**
* Set the E position (mm) of the planner (and the E stepper)
*/
void set_e_position(const float& e);
static void set_e_position(const float& e);
/**
* Does the buffer have any blocks queued?
*/
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
static FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
/**
* "Discards" the block and "releases" the memory.
* Called when the current block is no longer needed.
*/
FORCE_INLINE void discard_current_block() {
static FORCE_INLINE void discard_current_block() {
if (blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
@ -240,7 +248,7 @@ class Planner {
* The current block. NULL if the buffer is empty.
* This also marks the block as busy.
*/
FORCE_INLINE block_t* get_current_block() {
static FORCE_INLINE block_t* get_current_block() {
if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail];
block->busy = true;
@ -251,12 +259,12 @@ class Planner {
}
#if ENABLED(AUTOTEMP)
float autotemp_max = 250;
float autotemp_min = 210;
float autotemp_factor = 0.1;
bool autotemp_enabled = false;
void getHighESpeed();
void autotemp_M109();
static float autotemp_max;
static float autotemp_min;
static float autotemp_factor;
static bool autotemp_enabled;
static void getHighESpeed();
static void autotemp_M109();
#endif
private:
@ -264,14 +272,14 @@ class Planner {
/**
* Get the index of the next / previous block in the ring buffer
*/
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
static FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
static FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
/**
* Calculate the distance (not time) it takes to accelerate
* from initial_rate to target_rate using the given acceleration:
*/
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
static FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
}
@ -284,7 +292,7 @@ class Planner {
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
*/
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
static FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
}
@ -294,21 +302,21 @@ class Planner {
* to reach 'target_velocity' using 'acceleration' within a given
* 'distance'.
*/
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
static FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
}
void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next);
void forward_pass_kernel(block_t* previous, block_t* current, block_t* next);
static void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next);
static void forward_pass_kernel(block_t* previous, block_t* current, block_t* next);
void reverse_pass();
void forward_pass();
static void reverse_pass();
static void forward_pass();
void recalculate_trapezoids();
static void recalculate_trapezoids();
void recalculate();
static void recalculate();
};

Loading…
Cancel
Save