Formatted multi-line comments
This commit is contained in:
		
							parent
							
								
									e4039a9b5b
								
							
						
					
					
						commit
						443e6d26fe
					
				| @ -456,9 +456,11 @@ static bool send_ok[BUFSIZE]; | ||||
|   #define KEEPALIVE_STATE(n) ; | ||||
| #endif // HOST_KEEPALIVE_FEATURE
 | ||||
| 
 | ||||
| //===========================================================================
 | ||||
| //================================ Functions ================================
 | ||||
| //===========================================================================
 | ||||
| /**
 | ||||
|  * *************************************************************************** | ||||
|  * ******************************** FUNCTIONS ******************************** | ||||
|  * *************************************************************************** | ||||
|  */ | ||||
| 
 | ||||
| void process_next_command(); | ||||
| 
 | ||||
| @ -877,16 +879,16 @@ void get_command() { | ||||
|     } | ||||
|   #endif | ||||
| 
 | ||||
|   //
 | ||||
|   // Loop while serial characters are incoming and the queue is not full
 | ||||
|   //
 | ||||
|   /**
 | ||||
|    * Loop while serial characters are incoming and the queue is not full | ||||
|    */ | ||||
|   while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { | ||||
| 
 | ||||
|     char serial_char = MYSERIAL.read(); | ||||
| 
 | ||||
|     //
 | ||||
|     // If the character ends the line
 | ||||
|     //
 | ||||
|     /**
 | ||||
|      * If the character ends the line | ||||
|      */ | ||||
|     if (serial_char == '\n' || serial_char == '\r') { | ||||
| 
 | ||||
|       serial_comment_mode = false; // end of line == end of comment
 | ||||
| @ -994,9 +996,12 @@ void get_command() { | ||||
| 
 | ||||
|     if (!card.sdprinting) return; | ||||
| 
 | ||||
|     // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
 | ||||
|     // if it occurs, stop_buffering is triggered and the buffer is run dry.
 | ||||
|     // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
 | ||||
|     /**
 | ||||
|      * '#' stops reading from SD to the buffer prematurely, so procedural | ||||
|      * macro calls are possible. If it occurs, stop_buffering is triggered | ||||
|      * and the buffer is run dry; this character _can_ occur in serial com | ||||
|      * due to checksums, however, no checksums are used in SD printing. | ||||
|      */ | ||||
| 
 | ||||
|     if (commands_in_queue == 0) stop_buffering = false; | ||||
| 
 | ||||
| @ -1035,8 +1040,10 @@ void get_command() { | ||||
|         _commit_command(false); | ||||
|       } | ||||
|       else if (sd_count >= MAX_CMD_SIZE - 1) { | ||||
|         // Keep fetching, but ignore normal characters beyond the max length
 | ||||
|         // The command will be injected when EOL is reached
 | ||||
|         /**
 | ||||
|          * Keep fetching, but ignore normal characters beyond the max length | ||||
|          * The command will be injected when EOL is reached | ||||
|          */ | ||||
|       } | ||||
|       else { | ||||
|         if (sd_char == ';') sd_comment_mode = true; | ||||
| @ -1110,10 +1117,12 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); | ||||
|     if (extruder == 0) | ||||
|       return base_home_pos(X_AXIS) + home_offset[X_AXIS]; | ||||
|     else | ||||
|       // In dual carriage mode the extruder offset provides an override of the
 | ||||
|       // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
 | ||||
|       // This allow soft recalibration of the second extruder offset position without firmware reflash
 | ||||
|       // (through the M218 command).
 | ||||
|       /**
 | ||||
|        * In dual carriage mode the extruder offset provides an override of the | ||||
|        * second X-carriage offset when homed - otherwise X2_HOME_POS is used. | ||||
|        * This allow soft recalibration of the second extruder offset position | ||||
|        * without firmware reflash (through the M218 command). | ||||
|        */ | ||||
|       return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS; | ||||
|   } | ||||
| 
 | ||||
| @ -1173,8 +1182,11 @@ static void set_axis_is_at_home(AxisEnum axis) { | ||||
| 
 | ||||
|       // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
 | ||||
|       // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
 | ||||
|       // Works out real Homeposition angles using inverse kinematics,
 | ||||
|       // and calculates homing offset using forward kinematics
 | ||||
| 
 | ||||
|       /**
 | ||||
|        * Works out real Homeposition angles using inverse kinematics, | ||||
|        * and calculates homing offset using forward kinematics | ||||
|        */ | ||||
|       calculate_delta(homeposition); | ||||
| 
 | ||||
|       // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
 | ||||
| @ -1194,8 +1206,10 @@ static void set_axis_is_at_home(AxisEnum axis) { | ||||
| 
 | ||||
|       current_position[axis] = delta[axis]; | ||||
| 
 | ||||
|       // SCARA home positions are based on configuration since the actual limits are determined by the
 | ||||
|       // inverse kinematic transform.
 | ||||
|       /**
 | ||||
|        * SCARA home positions are based on configuration since the actual | ||||
|        * limits are determined by the inverse kinematic transform. | ||||
|        */ | ||||
|       min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | ||||
|       max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | ||||
|     } | ||||
| @ -1357,7 +1371,11 @@ static void setup_for_endstop_move() { | ||||
| 
 | ||||
|   static void run_z_probe() { | ||||
| 
 | ||||
|     refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
 | ||||
|     /**
 | ||||
|      * To prevent stepper_inactive_time from running out and | ||||
|      * EXTRUDER_RUNOUT_PREVENT from extruding | ||||
|      */ | ||||
|     refresh_cmd_timeout(); | ||||
| 
 | ||||
|     #if ENABLED(DELTA) | ||||
| 
 | ||||
| @ -1377,7 +1395,10 @@ static void setup_for_endstop_move() { | ||||
|       st_synchronize(); | ||||
|       endstops_hit_on_purpose(); // clear endstop hit flags
 | ||||
| 
 | ||||
|       // we have to let the planner know where we are right now as it is not where we said to go.
 | ||||
|       /**
 | ||||
|        * We have to let the planner know where we are right now as it | ||||
|        * is not where we said to go. | ||||
|        */ | ||||
|       long stop_steps = st_get_position(Z_AXIS); | ||||
|       float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; | ||||
|       current_position[Z_AXIS] = mm; | ||||
| @ -1402,7 +1423,10 @@ static void setup_for_endstop_move() { | ||||
| 
 | ||||
|       // Tell the planner where we ended up - Get this from the stepper handler
 | ||||
|       zPosition = st_get_axis_position_mm(Z_AXIS); | ||||
|       plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); | ||||
|       plan_set_position( | ||||
|         current_position[X_AXIS], current_position[Y_AXIS], zPosition, | ||||
|         current_position[E_AXIS] | ||||
|       ); | ||||
| 
 | ||||
|       // move up the retract distance
 | ||||
|       zPosition += home_bump_mm(Z_AXIS); | ||||
| @ -1474,10 +1498,21 @@ static void setup_for_endstop_move() { | ||||
|     feedrate = oldFeedRate; | ||||
|   } | ||||
| 
 | ||||
|   inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); } | ||||
|   inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); } | ||||
|   inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); } | ||||
|   inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); } | ||||
|   inline void do_blocking_move_to_xy(float x, float y) { | ||||
|     do_blocking_move_to(x, y, current_position[Z_AXIS]); | ||||
|   } | ||||
| 
 | ||||
|   inline void do_blocking_move_to_x(float x) { | ||||
|     do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); | ||||
|   } | ||||
| 
 | ||||
|   inline void do_blocking_move_to_z(float z) { | ||||
|     do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); | ||||
|   } | ||||
| 
 | ||||
|   inline void raise_z_after_probing() { | ||||
|     do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); | ||||
|   } | ||||
| 
 | ||||
|   static void clean_up_after_endstop_move() { | ||||
|     #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
| @ -1729,7 +1764,8 @@ static void setup_for_endstop_move() { | ||||
|       } | ||||
|     #endif | ||||
| 
 | ||||
|     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
 | ||||
|     // this also updates current_position
 | ||||
|     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); | ||||
| 
 | ||||
|     #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY) | ||||
|       if (probe_action & ProbeDeploy) { | ||||
| @ -1780,7 +1816,6 @@ static void setup_for_endstop_move() { | ||||
|     /**
 | ||||
|      * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING | ||||
|      */ | ||||
| 
 | ||||
|     static void extrapolate_one_point(int x, int y, int xdir, int ydir) { | ||||
|       if (bed_level[x][y] != 0.0) { | ||||
|         return;  // Don't overwrite good values.
 | ||||
| @ -1800,8 +1835,10 @@ static void setup_for_endstop_move() { | ||||
|       bed_level[x][y] = median; | ||||
|     } | ||||
| 
 | ||||
|     // Fill in the unprobed points (corners of circular print surface)
 | ||||
|     // using linear extrapolation, away from the center.
 | ||||
|     /**
 | ||||
|      * Fill in the unprobed points (corners of circular print surface) | ||||
|      * using linear extrapolation, away from the center. | ||||
|      */ | ||||
|     static void extrapolate_unprobed_bed_level() { | ||||
|       int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; | ||||
|       for (int y = 0; y <= half; y++) { | ||||
| @ -1815,7 +1852,9 @@ static void setup_for_endstop_move() { | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     // Print calibration results for plotting or manual frame adjustment.
 | ||||
|     /**
 | ||||
|      * Print calibration results for plotting or manual frame adjustment. | ||||
|      */ | ||||
|     static void print_bed_level() { | ||||
|       for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { | ||||
|         for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { | ||||
| @ -1826,7 +1865,9 @@ static void setup_for_endstop_move() { | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     // Reset calibration results to zero.
 | ||||
|     /**
 | ||||
|      * Reset calibration results to zero. | ||||
|      */ | ||||
|     void reset_bed_level() { | ||||
|       #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|         if (marlin_debug_flags & DEBUG_LEVELING) { | ||||
| @ -1846,8 +1887,10 @@ static void setup_for_endstop_move() { | ||||
| 
 | ||||
|     void raise_z_for_servo() { | ||||
|       float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING; | ||||
|       // The zprobe_zoffset is negative any switch below the nozzle, so
 | ||||
|       // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
 | ||||
|       /**
 | ||||
|        * The zprobe_zoffset is negative any switch below the nozzle, so | ||||
|        * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe | ||||
|        */ | ||||
|       z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos; | ||||
|       if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
 | ||||
|     } | ||||
| @ -1894,7 +1937,8 @@ static void axis_unhomed_error() { | ||||
|       #if Z_RAISE_AFTER_PROBING > 0 | ||||
|         raise_z_after_probing(); // raise Z
 | ||||
|       #endif | ||||
|       do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);  // Dock sled a bit closer to ensure proper capturing
 | ||||
|       // Dock sled a bit closer to ensure proper capturing
 | ||||
|       do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); | ||||
|       digitalWrite(SLED_PIN, LOW); // turn off magnet
 | ||||
|     } | ||||
|     else { | ||||
| @ -2190,9 +2234,9 @@ static void homeaxis(AxisEnum axis) { | ||||
| #endif // FWRETRACT
 | ||||
| 
 | ||||
| /**
 | ||||
|  * | ||||
|  * G-Code Handler functions | ||||
|  * | ||||
|  * *************************************************************************** | ||||
|  * ***************************** G-CODE HANDLING ***************************** | ||||
|  * *************************************************************************** | ||||
|  */ | ||||
| 
 | ||||
| /**
 | ||||
| @ -2383,7 +2427,10 @@ inline void gcode_G28() { | ||||
|     #endif | ||||
|   #endif | ||||
| 
 | ||||
|   // For mesh bed leveling deactivate the mesh calculations, will be turned on again when homing all axis
 | ||||
|   /**
 | ||||
|    * For mesh bed leveling deactivate the mesh calculations, will be turned | ||||
|    * on again when homing all axis | ||||
|    */ | ||||
|   #if ENABLED(MESH_BED_LEVELING) | ||||
|     uint8_t mbl_was_active = mbl.active; | ||||
|     mbl.active = 0; | ||||
| @ -2391,13 +2438,19 @@ inline void gcode_G28() { | ||||
| 
 | ||||
|   setup_for_endstop_move(); | ||||
| 
 | ||||
|   set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
 | ||||
|   /**
 | ||||
|    * Directly after a reset this is all 0. Later we get a hint if we have | ||||
|    * to raise z or not. | ||||
|    */ | ||||
|   set_destination_to_current(); | ||||
| 
 | ||||
|   feedrate = 0.0; | ||||
| 
 | ||||
|   #if ENABLED(DELTA) | ||||
|     // A delta can only safely home all axis at the same time
 | ||||
|     // all axis have to home at the same time
 | ||||
|     /**
 | ||||
|      * A delta can only safely home all axis at the same time | ||||
|      * all axis have to home at the same time | ||||
|      */ | ||||
| 
 | ||||
|     // Pretend the current position is 0,0,0
 | ||||
|     for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; | ||||
| @ -2462,9 +2515,11 @@ inline void gcode_G28() { | ||||
|         line_to_destination(); | ||||
|         st_synchronize(); | ||||
| 
 | ||||
|         // Update the current Z position even if it currently not real from Z-home
 | ||||
|         // otherwise each call to line_to_destination() will want to move Z-axis
 | ||||
|         // by MIN_Z_HEIGHT_FOR_HOMING.
 | ||||
|         /**
 | ||||
|          * Update the current Z position even if it currently not real from | ||||
|          * Z-home otherwise each call to line_to_destination() will want to | ||||
|          * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING. | ||||
|          */ | ||||
|         current_position[Z_AXIS] = destination[Z_AXIS]; | ||||
|       } | ||||
|     #endif | ||||
| @ -2581,15 +2636,18 @@ inline void gcode_G28() { | ||||
| 
 | ||||
|           if (home_all_axis) { | ||||
| 
 | ||||
|             // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
 | ||||
|             // No need to move Z any more as this height should already be safe
 | ||||
|             // enough to reach Z_SAFE_HOMING XY positions.
 | ||||
|             // Just make sure the planner is in sync.
 | ||||
|             /**
 | ||||
|              * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height | ||||
|              * No need to move Z any more as this height should already be safe | ||||
|              * enough to reach Z_SAFE_HOMING XY positions. | ||||
|              * Just make sure the planner is in sync. | ||||
|              */ | ||||
|             sync_plan_position(); | ||||
| 
 | ||||
|             //
 | ||||
|             // Set the Z probe (or just the nozzle) destination to the safe homing point
 | ||||
|             //
 | ||||
|             /**
 | ||||
|              * Set the Z probe (or just the nozzle) destination to the safe | ||||
|              *  homing point | ||||
|              */ | ||||
|             destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER)); | ||||
|             destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER)); | ||||
|             destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
 | ||||
| @ -2606,8 +2664,10 @@ inline void gcode_G28() { | ||||
|             line_to_destination(); | ||||
|             st_synchronize(); | ||||
| 
 | ||||
|             // Update the current positions for XY, Z is still at least at
 | ||||
|             // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
 | ||||
|             /**
 | ||||
|              * Update the current positions for XY, Z is still at least at | ||||
|              * MIN_Z_HEIGHT_FOR_HOMING height, no changes there. | ||||
|              */ | ||||
|             current_position[X_AXIS] = destination[X_AXIS]; | ||||
|             current_position[Y_AXIS] = destination[Y_AXIS]; | ||||
| 
 | ||||
| @ -2620,8 +2680,11 @@ inline void gcode_G28() { | ||||
|             // Let's see if X and Y are homed
 | ||||
|             if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) { | ||||
| 
 | ||||
|               // Make sure the Z probe is within the physical limits
 | ||||
|               // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
 | ||||
|               /**
 | ||||
|                * Make sure the Z probe is within the physical limits | ||||
|                * NOTE: This doesn't necessarily ensure the Z probe is also | ||||
|                * within the bed! | ||||
|                */ | ||||
|               float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS]; | ||||
|               if (   cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) | ||||
|                   && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) | ||||
| @ -2858,7 +2921,7 @@ inline void gcode_G28() { | ||||
|       case MeshSetZOffset: | ||||
|         if (code_seen('Z')) { | ||||
|           z = code_value(); | ||||
|         }  | ||||
|         } | ||||
|         else { | ||||
|           SERIAL_PROTOCOLPGM("Z not entered.\n"); | ||||
|           return; | ||||
| @ -3038,11 +3101,14 @@ inline void gcode_G28() { | ||||
|         float z_offset = zprobe_zoffset; | ||||
|         if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value(); | ||||
|       #else // !DELTA
 | ||||
|         // solve the plane equation ax + by + d = z
 | ||||
|         // A is the matrix with rows [x y 1] for all the probed points
 | ||||
|         // B is the vector of the Z positions
 | ||||
|         // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | ||||
|         // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | ||||
|         /**
 | ||||
|          * solve the plane equation ax + by + d = z | ||||
|          * A is the matrix with rows [x y 1] for all the probed points | ||||
|          * B is the vector of the Z positions | ||||
|          * the normal vector to the plane is formed by the coefficients of the | ||||
|          * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 | ||||
|          * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z | ||||
|          */ | ||||
| 
 | ||||
|         int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points; | ||||
| 
 | ||||
| @ -3273,9 +3339,11 @@ inline void gcode_G28() { | ||||
|         plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); | ||||
| 
 | ||||
|       if (!dryrun) { | ||||
|         // Correct the Z height difference from Z probe position and nozzle tip position.
 | ||||
|         // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
 | ||||
|         // When the bed is uneven, this height must be corrected.
 | ||||
|         /**
 | ||||
|          * Correct the Z height difference from Z probe position and nozzle tip position. | ||||
|          * The Z height on homing is measured by Z probe, but the Z probe is quite far | ||||
|          * from the nozzle. When the bed is uneven, this height must be corrected. | ||||
|          */ | ||||
|         float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, | ||||
|               y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, | ||||
|               z_tmp = current_position[Z_AXIS], | ||||
| @ -3290,24 +3358,31 @@ inline void gcode_G28() { | ||||
|           } | ||||
|         #endif | ||||
| 
 | ||||
|         apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
 | ||||
|         // Apply the correction sending the Z probe offset
 | ||||
|         apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); | ||||
| 
 | ||||
|         // Get the current Z position and send it to the planner.
 | ||||
|         //
 | ||||
|         // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
 | ||||
|         //
 | ||||
|         // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
 | ||||
|         //
 | ||||
|         // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
 | ||||
|         //
 | ||||
|         // >> Should home_offset[Z_AXIS] be included?
 | ||||
|         //
 | ||||
|         //      Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
 | ||||
|         //      If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
 | ||||
|         //      then perhaps it should not be included here. The purpose of home_offset[] is to
 | ||||
|         //      adjust for inaccurate endstops, not for reasonably accurate probes. If it were
 | ||||
|         //      added here, it could be seen as a compensating factor for the Z probe.
 | ||||
|         //
 | ||||
|         /*
 | ||||
|          * Get the current Z position and send it to the planner. | ||||
|          * | ||||
|          * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z | ||||
|          * (most recent plan_set_position/sync_plan_position) | ||||
|          * | ||||
|          * >> zprobe_zoffset : Z distance from nozzle to Z probe | ||||
|          * (set by default, M851, EEPROM, or Menu) | ||||
|          * | ||||
|          * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted | ||||
|          * after the last probe | ||||
|          * | ||||
|          * >> Should home_offset[Z_AXIS] be included? | ||||
|          * | ||||
|          * | ||||
|          *   Discussion: home_offset[Z_AXIS] was applied in G28 to set the | ||||
|          *   starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is | ||||
|          *   not actually "homing" Z... then perhaps it should not be included | ||||
|          *   here. The purpose of home_offset[] is to adjust for inaccurate | ||||
|          *   endstops, not for reasonably accurate probes. If it were added | ||||
|          *   here, it could be seen as a compensating factor for the Z probe. | ||||
|          */ | ||||
|         #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||
|           if (marlin_debug_flags & DEBUG_LEVELING) { | ||||
|             SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp  = ", z_tmp); | ||||
| @ -3697,7 +3772,10 @@ inline void gcode_M42() { | ||||
| 
 | ||||
| #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) | ||||
| 
 | ||||
|   // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
 | ||||
|   /**
 | ||||
|    * This is redundant since the SanityCheck.h already checks for a valid | ||||
|    *  Z_MIN_PROBE_PIN, but here for clarity. | ||||
|    */ | ||||
|   #if ENABLED(Z_MIN_PROBE_ENDSTOP) | ||||
|     #if !HAS_Z_PROBE | ||||
|       #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation. | ||||
| @ -3804,17 +3882,20 @@ inline void gcode_M42() { | ||||
|       if (!seen_L) n_legs = 7; | ||||
|     } | ||||
| 
 | ||||
|     // Now get everything to the specified probe point So we can safely do a probe to
 | ||||
|     // get us close to the bed.  If the Z-Axis is far from the bed, we don't want to
 | ||||
|     // use that as a starting point for each probe.
 | ||||
|     //
 | ||||
|     /**
 | ||||
|      * Now get everything to the specified probe point So we can safely do a | ||||
|      * probe to get us close to the bed.  If the Z-Axis is far from the bed, | ||||
|      * we don't want to use that as a starting point for each probe. | ||||
|      */ | ||||
|     if (verbose_level > 2) | ||||
|       SERIAL_PROTOCOLPGM("Positioning the probe...\n"); | ||||
| 
 | ||||
|     #if ENABLED(DELTA) | ||||
|       reset_bed_level();    // we don't do bed level correction in M48 because we want the raw data when we probe
 | ||||
|       // we don't do bed level correction in M48 because we want the raw data when we probe
 | ||||
|       reset_bed_level(); | ||||
|     #else | ||||
|       plan_bed_level_matrix.set_to_identity();  // we don't do bed level correction in M48 because we wantthe raw data when we probe
 | ||||
|       // we don't do bed level correction in M48 because we want the raw data when we probe
 | ||||
|       plan_bed_level_matrix.set_to_identity(); | ||||
|     #endif | ||||
| 
 | ||||
|     if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0) | ||||
| @ -3822,10 +3903,10 @@ inline void gcode_M42() { | ||||
| 
 | ||||
|     do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER); | ||||
| 
 | ||||
|     //
 | ||||
|     // OK, do the initial probe to get us close to the bed.
 | ||||
|     // Then retrace the right amount and use that in subsequent probes
 | ||||
|     //
 | ||||
|     /**
 | ||||
|      * OK, do the initial probe to get us close to the bed. | ||||
|      * Then retrace the right amount and use that in subsequent probes | ||||
|      */ | ||||
|     setup_for_endstop_move(); | ||||
| 
 | ||||
|     probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, | ||||
| @ -3862,19 +3943,27 @@ inline void gcode_M42() { | ||||
| 
 | ||||
|         for (uint8_t l = 0; l < n_legs - 1; l++) { | ||||
|           double delta_angle; | ||||
| 
 | ||||
|           if (schizoid_flag) | ||||
|             delta_angle = dir * 2.0 * 72.0;   // The points of a 5 point star are 72 degrees apart.  We need to
 | ||||
|           // skip a point and go to the next one on the star.
 | ||||
|             // The points of a 5 point star are 72 degrees apart.  We need to
 | ||||
|             // skip a point and go to the next one on the star.
 | ||||
|             delta_angle = dir * 2.0 * 72.0; | ||||
| 
 | ||||
|           else | ||||
|             delta_angle = dir * (float) random(25, 45);   // If we do this line, we are just trying to move further
 | ||||
|           // around the circle.
 | ||||
|             // If we do this line, we are just trying to move further
 | ||||
|             // around the circle.
 | ||||
|             delta_angle = dir * (float) random(25, 45); | ||||
| 
 | ||||
|           angle += delta_angle; | ||||
| 
 | ||||
|           while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
 | ||||
|             angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
 | ||||
|           while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
 | ||||
|             angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
 | ||||
| 
 | ||||
|           X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius; | ||||
|           Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius; | ||||
| 
 | ||||
|           #if DISABLED(DELTA) | ||||
|             X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); | ||||
|             Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); | ||||
| @ -3904,10 +3993,13 @@ inline void gcode_M42() { | ||||
|         } // n_legs loop
 | ||||
|       } // n_legs
 | ||||
| 
 | ||||
|       // We don't really have to do this move, but if we don't we can see a funny shift in the Z Height
 | ||||
|       // Because the user might not have the Z_RAISE_BEFORE_PROBING height identical to the
 | ||||
|       // Z_RAISE_BETWEEN_PROBING height.  This gets us back to the probe location at the same height that
 | ||||
|       // we have been running around the circle at.
 | ||||
|       /**
 | ||||
|        * We don't really have to do this move, but if we don't we can see a | ||||
|        * funny shift in the Z Height because the user might not have the | ||||
|        * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING | ||||
|        * height. This gets us back to the probe location at the same height that | ||||
|        * we have been running around the circle at. | ||||
|        */ | ||||
|       do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER); | ||||
|       if (deploy_probe_for_each_reading) | ||||
|         sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level); | ||||
| @ -3917,17 +4009,17 @@ inline void gcode_M42() { | ||||
|           sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level); | ||||
|       } | ||||
| 
 | ||||
|       //
 | ||||
|       // Get the current mean for the data points we have so far
 | ||||
|       //
 | ||||
|       /**
 | ||||
|        * Get the current mean for the data points we have so far | ||||
|        */ | ||||
|       sum = 0.0; | ||||
|       for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; | ||||
|       mean = sum / (n + 1); | ||||
| 
 | ||||
|       //
 | ||||
|       // Now, use that mean to calculate the standard deviation for the
 | ||||
|       // data points we have so far
 | ||||
|       //
 | ||||
|       /**
 | ||||
|        * Now, use that mean to calculate the standard deviation for the | ||||
|        * data points we have so far | ||||
|        */ | ||||
|       sum = 0.0; | ||||
|       for (uint8_t j = 0; j <= n; j++) { | ||||
|         float ss = sample_set[j] - mean; | ||||
| @ -4367,9 +4459,11 @@ inline void gcode_M140() { | ||||
|   inline void gcode_M80() { | ||||
|     OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
 | ||||
| 
 | ||||
|     // If you have a switch on suicide pin, this is useful
 | ||||
|     // if you want to start another print with suicide feature after
 | ||||
|     // a print without suicide...
 | ||||
|     /**
 | ||||
|      * If you have a switch on suicide pin, this is useful | ||||
|      * if you want to start another print with suicide feature after | ||||
|      * a print without suicide... | ||||
|      */ | ||||
|     #if HAS_SUICIDE | ||||
|       OUT_WRITE(SUICIDE_PIN, HIGH); | ||||
|     #endif | ||||
| @ -6973,31 +7067,32 @@ void plan_arc( | ||||
|   float linear_per_segment = linear_travel / segments; | ||||
|   float extruder_per_segment = extruder_travel / segments; | ||||
| 
 | ||||
|   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | ||||
|      and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | ||||
|          r_T = [cos(phi) -sin(phi); | ||||
|                 sin(phi)  cos(phi] * r ; | ||||
| 
 | ||||
|      For arc generation, the center of the circle is the axis of rotation and the radius vector is | ||||
|      defined from the circle center to the initial position. Each line segment is formed by successive | ||||
|      vector rotations. This requires only two cos() and sin() computations to form the rotation | ||||
|      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | ||||
|      all double numbers are single precision on the Arduino. (True double precision will not have | ||||
|      round off issues for CNC applications.) Single precision error can accumulate to be greater than | ||||
|      tool precision in some cases. Therefore, arc path correction is implemented. | ||||
| 
 | ||||
|      Small angle approximation may be used to reduce computation overhead further. This approximation | ||||
|      holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | ||||
|      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | ||||
|      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for | ||||
|      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | ||||
|      issue for CNC machines with the single precision Arduino calculations. | ||||
| 
 | ||||
|      This approximation also allows plan_arc to immediately insert a line segment into the planner | ||||
|      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | ||||
|      a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. | ||||
|      This is important when there are successive arc motions. | ||||
|   */ | ||||
|   /**
 | ||||
|    * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | ||||
|    * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | ||||
|    *     r_T = [cos(phi) -sin(phi); | ||||
|    *            sin(phi)  cos(phi] * r ; | ||||
|    * | ||||
|    * For arc generation, the center of the circle is the axis of rotation and the radius vector is | ||||
|    * defined from the circle center to the initial position. Each line segment is formed by successive | ||||
|    * vector rotations. This requires only two cos() and sin() computations to form the rotation | ||||
|    * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | ||||
|    * all double numbers are single precision on the Arduino. (True double precision will not have | ||||
|    * round off issues for CNC applications.) Single precision error can accumulate to be greater than | ||||
|    * tool precision in some cases. Therefore, arc path correction is implemented. | ||||
|    * | ||||
|    * Small angle approximation may be used to reduce computation overhead further. This approximation | ||||
|    * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | ||||
|    * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | ||||
|    * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for | ||||
|    * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | ||||
|    * issue for CNC machines with the single precision Arduino calculations. | ||||
|    * | ||||
|    * This approximation also allows plan_arc to immediately insert a line segment into the planner | ||||
|    * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | ||||
|    * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. | ||||
|    * This is important when there are successive arc motions. | ||||
|    */ | ||||
|   // Vector rotation matrix values
 | ||||
|   float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
 | ||||
|   float sin_T = theta_per_segment; | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user