Refactor serial class with templates (#20783)
parent
c929fb52dd
commit
3f01b222b2
@ -0,0 +1,146 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "../inc/MarlinConfigPre.h"
|
||||||
|
|
||||||
|
#if ENABLED(EMERGENCY_PARSER)
|
||||||
|
#include "../feature/e_parser.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef DEC
|
||||||
|
#define DEC 10
|
||||||
|
#define HEX 16
|
||||||
|
#define OCT 8
|
||||||
|
#define BIN 2
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// flushTX is not implemented in all HAL, so use SFINAE to call the method where it is.
|
||||||
|
CALL_IF_EXISTS_IMPL(void, flushTX );
|
||||||
|
CALL_IF_EXISTS_IMPL(bool, connected, true);
|
||||||
|
|
||||||
|
// Using Curiously Recurring Template Pattern here to avoid virtual table cost when compiling.
|
||||||
|
// Since the real serial class is known at compile time, this results in compiler writing a completely
|
||||||
|
// efficient code
|
||||||
|
template <class Child>
|
||||||
|
struct SerialBase {
|
||||||
|
#if ENABLED(EMERGENCY_PARSER)
|
||||||
|
const bool ep_enabled;
|
||||||
|
EmergencyParser::State emergency_state;
|
||||||
|
inline bool emergency_parser_enabled() { return ep_enabled; }
|
||||||
|
SerialBase(bool ep_capable) : ep_enabled(ep_capable), emergency_state(EmergencyParser::State::EP_RESET) {}
|
||||||
|
#else
|
||||||
|
SerialBase(const bool) {}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Static dispatch methods below:
|
||||||
|
// The most important method here is where it all ends to:
|
||||||
|
size_t write(uint8_t c) { return static_cast<Child*>(this)->write(c); }
|
||||||
|
// Called when the parser finished processing an instruction, usually build to nothing
|
||||||
|
void msgDone() { static_cast<Child*>(this)->msgDone(); }
|
||||||
|
// Called upon initialization
|
||||||
|
void begin(const long baudRate) { static_cast<Child*>(this)->begin(baudRate); }
|
||||||
|
// Called upon destruction
|
||||||
|
void end() { static_cast<Child*>(this)->end(); }
|
||||||
|
/** Check for available data from the port
|
||||||
|
@param index The port index, usually 0 */
|
||||||
|
bool available(uint8_t index = 0) { return static_cast<Child*>(this)->available(index); }
|
||||||
|
/** Read a value from the port
|
||||||
|
@param index The port index, usually 0 */
|
||||||
|
int read(uint8_t index = 0) { return static_cast<Child*>(this)->read(index); }
|
||||||
|
// Check if the serial port is connected (usually bypassed)
|
||||||
|
bool connected() { return static_cast<Child*>(this)->connected(); }
|
||||||
|
// Redirect flush
|
||||||
|
void flush() { static_cast<Child*>(this)->flush(); }
|
||||||
|
// Not all implementation have a flushTX, so let's call them only if the child has the implementation
|
||||||
|
void flushTX() { CALL_IF_EXISTS(void, static_cast<Child*>(this), flushTX); }
|
||||||
|
|
||||||
|
// Glue code here
|
||||||
|
FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
|
||||||
|
FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
|
||||||
|
FORCE_INLINE void print(const char* str) { write(str); }
|
||||||
|
FORCE_INLINE void print(char c, int base = 0) { print((long)c, base); }
|
||||||
|
FORCE_INLINE void print(unsigned char c, int base = 0) { print((unsigned long)c, base); }
|
||||||
|
FORCE_INLINE void print(int c, int base = DEC) { print((long)c, base); }
|
||||||
|
FORCE_INLINE void print(unsigned int c, int base = DEC) { print((unsigned long)c, base); }
|
||||||
|
void print(long c, int base = DEC) { if (!base) write(c); write((const uint8_t*)"-", c < 0); printNumber(c < 0 ? -c : c, base); }
|
||||||
|
void print(unsigned long c, int base = DEC) { printNumber(c, base); }
|
||||||
|
void print(double c, int digits = 2) { printFloat(c, digits); }
|
||||||
|
|
||||||
|
FORCE_INLINE void println(const char s[]) { print(s); println(); }
|
||||||
|
FORCE_INLINE void println(char c, int base = 0) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(unsigned char c, int base = 0) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(int c, int base = DEC) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(unsigned int c, int base = DEC) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(long c, int base = DEC) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(unsigned long c, int base = DEC) { print(c, base); println(); }
|
||||||
|
FORCE_INLINE void println(double c, int digits = 2) { print(c, digits); println(); }
|
||||||
|
void println() { write("\r\n"); }
|
||||||
|
|
||||||
|
// Print a number with the given base
|
||||||
|
void printNumber(unsigned long n, const uint8_t base) {
|
||||||
|
if (n) {
|
||||||
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
||||||
|
int8_t i = 0;
|
||||||
|
while (n) {
|
||||||
|
buf[i++] = n % base;
|
||||||
|
n /= base;
|
||||||
|
}
|
||||||
|
while (i--) write((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
|
||||||
|
}
|
||||||
|
else write('0');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Print a decimal number
|
||||||
|
void printFloat(double number, uint8_t digits) {
|
||||||
|
// Handle negative numbers
|
||||||
|
if (number < 0.0) {
|
||||||
|
write('-');
|
||||||
|
number = -number;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
||||||
|
double rounding = 0.5;
|
||||||
|
LOOP_L_N(i, digits) rounding *= 0.1;
|
||||||
|
number += rounding;
|
||||||
|
|
||||||
|
// Extract the integer part of the number and print it
|
||||||
|
unsigned long int_part = (unsigned long)number;
|
||||||
|
double remainder = number - (double)int_part;
|
||||||
|
printNumber(int_part, 10);
|
||||||
|
|
||||||
|
// Print the decimal point, but only if there are digits beyond
|
||||||
|
if (digits) {
|
||||||
|
write('.');
|
||||||
|
// Extract digits from the remainder one at a time
|
||||||
|
while (digits--) {
|
||||||
|
remainder *= 10.0;
|
||||||
|
int toPrint = int(remainder);
|
||||||
|
printNumber(toPrint, 10);
|
||||||
|
remainder -= toPrint;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// All serial instances will be built by chaining the features required for the function in a form of a template
|
||||||
|
// type definition
|
@ -0,0 +1,230 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "serial_base.h"
|
||||||
|
|
||||||
|
// The most basic serial class: it dispatch to the base serial class with no hook whatsoever. This will compile to nothing but the base serial class
|
||||||
|
template <class SerialT>
|
||||||
|
struct BaseSerial : public SerialBase< BaseSerial<SerialT> >, public SerialT {
|
||||||
|
typedef SerialBase< BaseSerial<SerialT> > BaseClassT;
|
||||||
|
|
||||||
|
// It's required to implement a write method here to help compiler disambiguate what method to call
|
||||||
|
using SerialT::write;
|
||||||
|
using SerialT::flush;
|
||||||
|
|
||||||
|
void msgDone() {}
|
||||||
|
|
||||||
|
bool available(uint8_t index) { return index == 0 && SerialT::available(); }
|
||||||
|
int read(uint8_t index) { return index == 0 ? SerialT::read() : -1; }
|
||||||
|
bool connected() { return CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected);; }
|
||||||
|
// We have 2 implementation of the same method in both base class, let's say which one we want
|
||||||
|
using SerialT::available;
|
||||||
|
using SerialT::read;
|
||||||
|
using SerialT::begin;
|
||||||
|
using SerialT::end;
|
||||||
|
|
||||||
|
using BaseClassT::print;
|
||||||
|
using BaseClassT::println;
|
||||||
|
|
||||||
|
BaseSerial(const bool e) : BaseClassT(e) {}
|
||||||
|
|
||||||
|
// Forward constructor
|
||||||
|
template <typename... Args>
|
||||||
|
BaseSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
// A serial with a condition checked at runtime for its output
|
||||||
|
// A bit less efficient than static dispatching but since it's only used for ethernet's serial output right now, it's ok.
|
||||||
|
template <class SerialT>
|
||||||
|
struct ConditionalSerial : public SerialBase< ConditionalSerial<SerialT> > {
|
||||||
|
typedef SerialBase< ConditionalSerial<SerialT> > BaseClassT;
|
||||||
|
|
||||||
|
bool & condition;
|
||||||
|
SerialT & out;
|
||||||
|
size_t write(uint8_t c) { if (condition) return out.write(c); return 0; }
|
||||||
|
void flush() { if (condition) out.flush(); }
|
||||||
|
void begin(long br) { out.begin(br); }
|
||||||
|
void end() { out.end(); }
|
||||||
|
|
||||||
|
void msgDone() {}
|
||||||
|
bool connected() { return CALL_IF_EXISTS(bool, &out, connected); }
|
||||||
|
|
||||||
|
bool available(uint8_t index) { return index == 0 && out.available(); }
|
||||||
|
int read(uint8_t index) { return index == 0 ? out.read() : -1; }
|
||||||
|
using BaseClassT::available;
|
||||||
|
using BaseClassT::read;
|
||||||
|
|
||||||
|
ConditionalSerial(bool & conditionVariable, SerialT & out, const bool e) : BaseClassT(e), condition(conditionVariable), out(out) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
// A simple foward class that taking a reference to an existing serial instance (likely created in their respective framework)
|
||||||
|
template <class SerialT>
|
||||||
|
struct ForwardSerial : public SerialBase< ForwardSerial<SerialT> > {
|
||||||
|
typedef SerialBase< ForwardSerial<SerialT> > BaseClassT;
|
||||||
|
|
||||||
|
SerialT & out;
|
||||||
|
size_t write(uint8_t c) { return out.write(c); }
|
||||||
|
void flush() { out.flush(); }
|
||||||
|
void begin(long br) { out.begin(br); }
|
||||||
|
void end() { out.end(); }
|
||||||
|
|
||||||
|
void msgDone() {}
|
||||||
|
// Existing instances implement Arduino's operator bool, so use that if it's available
|
||||||
|
bool connected() { return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, &out, connected) : (bool)out; }
|
||||||
|
|
||||||
|
bool available(uint8_t index) { return index == 0 && out.available(); }
|
||||||
|
int read(uint8_t index) { return index == 0 ? out.read() : -1; }
|
||||||
|
bool available() { return out.available(); }
|
||||||
|
int read() { return out.read(); }
|
||||||
|
|
||||||
|
ForwardSerial(const bool e, SerialT & out) : BaseClassT(e), out(out) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
// A class that's can be hooked and unhooked at runtime, useful to capturing the output of the serial interface
|
||||||
|
template <class SerialT>
|
||||||
|
struct RuntimeSerial : public SerialBase< RuntimeSerial<SerialT> >, public SerialT {
|
||||||
|
typedef SerialBase< RuntimeSerial<SerialT> > BaseClassT;
|
||||||
|
typedef void (*WriteHook)(void * userPointer, uint8_t c);
|
||||||
|
typedef void (*EndOfMessageHook)(void * userPointer);
|
||||||
|
|
||||||
|
WriteHook writeHook;
|
||||||
|
EndOfMessageHook eofHook;
|
||||||
|
void * userPointer;
|
||||||
|
|
||||||
|
size_t write(uint8_t c) {
|
||||||
|
if (writeHook) writeHook(userPointer, c);
|
||||||
|
return SerialT::write(c);
|
||||||
|
}
|
||||||
|
|
||||||
|
void msgDone() {
|
||||||
|
if (eofHook) eofHook(userPointer);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool available(uint8_t index) { return index == 0 && SerialT::available(); }
|
||||||
|
int read(uint8_t index) { return index == 0 ? SerialT::read() : -1; }
|
||||||
|
using SerialT::available;
|
||||||
|
using SerialT::read;
|
||||||
|
using SerialT::flush;
|
||||||
|
using SerialT::begin;
|
||||||
|
using SerialT::end;
|
||||||
|
|
||||||
|
using BaseClassT::print;
|
||||||
|
using BaseClassT::println;
|
||||||
|
|
||||||
|
|
||||||
|
void setHook(WriteHook writeHook = 0, EndOfMessageHook eofHook = 0, void * userPointer = 0) {
|
||||||
|
// Order is important here as serial code can be called inside interrupts
|
||||||
|
// When setting a hook, the user pointer must be set first so if writeHook is called as soon as it's set, it'll be valid
|
||||||
|
if (userPointer) this->userPointer = userPointer;
|
||||||
|
this->writeHook = writeHook;
|
||||||
|
this->eofHook = eofHook;
|
||||||
|
// Order is important here because of asynchronous access here
|
||||||
|
// When unsetting a hook, the user pointer must be unset last so that any pending writeHook is still using the old pointer
|
||||||
|
if (!userPointer) this->userPointer = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
RuntimeSerial(const bool e) : BaseClassT(e), writeHook(0), eofHook(0), userPointer(0) {}
|
||||||
|
|
||||||
|
// Forward constructor
|
||||||
|
template <typename... Args>
|
||||||
|
RuntimeSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
// A class that's duplicating its output conditionally to 2 serial interface
|
||||||
|
template <class Serial0T, class Serial1T, const uint8_t offset = 0>
|
||||||
|
struct MultiSerial : public SerialBase< MultiSerial<Serial0T, Serial1T, offset> > {
|
||||||
|
typedef SerialBase< MultiSerial<Serial0T, Serial1T, offset> > BaseClassT;
|
||||||
|
|
||||||
|
uint8_t portMask;
|
||||||
|
Serial0T & serial0;
|
||||||
|
Serial1T & serial1;
|
||||||
|
|
||||||
|
enum Masks {
|
||||||
|
FirstOutputMask = (1 << offset),
|
||||||
|
SecondOutputMask = (1 << (offset + 1)),
|
||||||
|
AllMask = FirstOutputMask | SecondOutputMask,
|
||||||
|
};
|
||||||
|
|
||||||
|
size_t write(uint8_t c) {
|
||||||
|
size_t ret = 0;
|
||||||
|
if (portMask & FirstOutputMask) ret = serial0.write(c);
|
||||||
|
if (portMask & SecondOutputMask) ret = serial1.write(c) | ret;
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
void msgDone() {
|
||||||
|
if (portMask & FirstOutputMask) serial0.msgDone();
|
||||||
|
if (portMask & SecondOutputMask) serial1.msgDone();
|
||||||
|
}
|
||||||
|
bool available(uint8_t index) {
|
||||||
|
switch(index) {
|
||||||
|
case 0 + offset: return serial0.available();
|
||||||
|
case 1 + offset: return serial1.available();
|
||||||
|
default: return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
int read(uint8_t index) {
|
||||||
|
switch(index) {
|
||||||
|
case 0 + offset: return serial0.read();
|
||||||
|
case 1 + offset: return serial1.read();
|
||||||
|
default: return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void begin(const long br) {
|
||||||
|
if (portMask & FirstOutputMask) serial0.begin(br);
|
||||||
|
if (portMask & SecondOutputMask) serial1.begin(br);
|
||||||
|
}
|
||||||
|
void end() {
|
||||||
|
if (portMask & FirstOutputMask) serial0.end();
|
||||||
|
if (portMask & SecondOutputMask) serial1.end();
|
||||||
|
}
|
||||||
|
bool connected() {
|
||||||
|
bool ret = true;
|
||||||
|
if (portMask & FirstOutputMask) ret = CALL_IF_EXISTS(bool, &serial0, connected);
|
||||||
|
if (portMask & SecondOutputMask) ret = ret && CALL_IF_EXISTS(bool, &serial1, connected);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
using BaseClassT::available;
|
||||||
|
using BaseClassT::read;
|
||||||
|
|
||||||
|
// Redirect flush
|
||||||
|
void flush() {
|
||||||
|
if (portMask & FirstOutputMask) serial0.flush();
|
||||||
|
if (portMask & SecondOutputMask) serial1.flush();
|
||||||
|
}
|
||||||
|
void flushTX() {
|
||||||
|
if (portMask & FirstOutputMask) CALL_IF_EXISTS(void, &serial0, flushTX);
|
||||||
|
if (portMask & SecondOutputMask) CALL_IF_EXISTS(void, &serial1, flushTX);
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiSerial(Serial0T & serial0, Serial1T & serial1, int8_t mask = AllMask, const bool e = false) :
|
||||||
|
BaseClassT(e),
|
||||||
|
portMask(mask), serial0(serial0), serial1(serial1) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Build the actual serial object depending on current configuration
|
||||||
|
#define Serial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, BaseSerial)
|
||||||
|
#define ForwardSerial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, ForwardSerial)
|
||||||
|
#ifdef HAS_MULTI_SERIAL
|
||||||
|
#define Serial1Type ConditionalSerial
|
||||||
|
#endif
|
@ -0,0 +1,44 @@
|
|||||||
|
# Serial port architecture in Marlin
|
||||||
|
|
||||||
|
Marlin is targeting a pletora of different CPU architecture and platforms. Each of these platforms has its own serial interface.
|
||||||
|
While many provide a Arduino-like Serial class, it's not all of them, and the differences in the existing API create a very complex brain teaser for writing code that works more or less on each platform.
|
||||||
|
|
||||||
|
Moreover, many platform have intrinsic needs about serial port (like forwarding the output on multiple serial port, providing a *serial-like* telnet server, mixing USB-based serial port with SD card emulation) that are difficult to handle cleanly in the other platform serial logic.
|
||||||
|
|
||||||
|
|
||||||
|
Starting with version `2.0.9`, Marlin provides a common interface for its serial needs.
|
||||||
|
|
||||||
|
## Common interface
|
||||||
|
|
||||||
|
This interface is declared in `Marlin/src/core/serial_base.h`
|
||||||
|
Any implementation will need to follow this interface for being used transparently in Marlin's codebase.
|
||||||
|
|
||||||
|
The implementation was written to prioritize performance over abstraction, so the base interface is not using virtual inheritance to avoid the cost of virtual dispatching while calling methods.
|
||||||
|
Instead, the Curiously Recurring Template Pattern (**CRTP**) is used so that, upon compilation, the interface abstraction does not incur a performance cost.
|
||||||
|
|
||||||
|
Because some platform do not follow the same interface, the missing method in the actual low-level implementation are detected via SFINAE and a wrapper is generated when such method are missing. See `CALL_IF_EXISTS` macro in `Marlin/src/core/macros.h` for the documentation of this technic.
|
||||||
|
|
||||||
|
## Composing the desired feature
|
||||||
|
The different specificities for each architecture are provided by composing the serial type based on desired functionality.
|
||||||
|
In the `Marlin/src/core/serial_hook.h` file, the different serial feature are declared and defined in each templated type:
|
||||||
|
1. `BaseSerial` is a simple 1:1 wrapper to the underlying, Arduino compatible, `Serial`'s class. It derives from it. You'll use this if the platform does not do anything specific for the `Serial` object (for example, if an interrupt callback calls directly the serial **instance** in the platform's framework code, this is not the right class to use). This wrapper is completely inlined so that it does not generate any code upon compilation. `BaseSerial` constructor forwards any parameter to the platform's `Serial`'s constructor.
|
||||||
|
2. `ForwardSerial` is a composing wrapper. It references an actual Arduino compatible `Serial` instance. You'll use this if the instance is declared in the platform's framework and is being referred directly in the framework. This is not as efficient as the `BaseSerial` implementation since static dereferencing is done for each method call (it'll still be faster than virtual dispatching)
|
||||||
|
3. `ConditionalSerial` is working a bit like the `ForwardSerial` interface, but it checks a boolean condition before calling the referenced instance. You'll use it when the serial output can be switch off at runtime, for example in a *telnet* like serial output that should not emit any packet if no client is connected.
|
||||||
|
4. `RuntimeSerial` is providing a runtime-modifiable hooking method for its `write` and `msgDone` method. You'll use it if you need to capture the serial output of Marlin, for example to display the G-Code parser's output on a GUI interface. The hooking interface is setup via the `setHook` method.
|
||||||
|
5. `MultiSerial` is a runtime modifiable serial output multiplexer. It can output (*respectively input*) to 2 different interface based on a port *mask*. You'll use this if you need to output the same serial stream to multiple port. You can plug a `MultiSerial` to itself to duplicate to more than 2 ports.
|
||||||
|
|
||||||
|
## Plumbing
|
||||||
|
Since all the types above are using CRTP, it's possible to combine them to get the appropriate functionality.
|
||||||
|
This is easily done via type definition of the feature.
|
||||||
|
|
||||||
|
For example, to present a serial interface that's outputting to 2 serial port, the first one being hooked at runtime and the second one connected to a runtime switchable telnet client, you'll declare the type to use as:
|
||||||
|
```
|
||||||
|
typedef MultiSerial< RuntimeSerial<Serial>, ConditionalSerial<TelnetClient> > Serial0Type;
|
||||||
|
```
|
||||||
|
|
||||||
|
## Emergency parser
|
||||||
|
By default, the serial base interface provide an emergency parser that's only enable for serial classes that support it.
|
||||||
|
Because of this condition, all underlying type takes a first `bool emergencyParserEnabled` argument to their constructor. You must take into account this parameter when defining the actual type used.
|
||||||
|
|
||||||
|
|
||||||
|
*This document was written by [X-Ryl669](https://blog.cyril.by) and is under [CC-SA license](https://creativecommons.org/licenses/by-sa)*
|
Loading…
Reference in New Issue