UBL core and support files
parent
cf94688925
commit
238b8fd2a3
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,331 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#include "math.h"
|
||||||
|
|
||||||
|
#ifndef UNIFIED_BED_LEVELING_H
|
||||||
|
#define UNIFIED_BED_LEVELING_H
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
|
#define UBL_OK false
|
||||||
|
#define UBL_ERR true
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
int x_index, y_index;
|
||||||
|
float distance; // Not always used. But when populated, it is the distance
|
||||||
|
// from the search location
|
||||||
|
} mesh_index_pair;
|
||||||
|
|
||||||
|
struct vector { double dx, dy, dz; };
|
||||||
|
|
||||||
|
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP };
|
||||||
|
|
||||||
|
bool axis_unhomed_error(bool, bool, bool);
|
||||||
|
void dump(char *str, float f);
|
||||||
|
bool G29_lcd_clicked();
|
||||||
|
void probe_entire_mesh(float, float, bool, bool);
|
||||||
|
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||||
|
void manually_probe_remaining_mesh(float, float, float, float, bool);
|
||||||
|
struct vector tilt_mesh_based_on_3pts(float, float, float);
|
||||||
|
void new_set_bed_level_equation_3pts(float, float, float);
|
||||||
|
float measure_business_card_thickness(float);
|
||||||
|
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]);
|
||||||
|
void Find_Mean_Mesh_Height();
|
||||||
|
void Shift_Mesh_Height();
|
||||||
|
bool G29_Parameter_Parsing();
|
||||||
|
void G29_What_Command();
|
||||||
|
void G29_EEPROM_Dump();
|
||||||
|
void G29_Kompare_Current_Mesh_to_Stored_Mesh();
|
||||||
|
void fine_tune_mesh(float, float, float, bool);
|
||||||
|
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
char *ftostr43sign(const float&, char);
|
||||||
|
|
||||||
|
void gcode_G26();
|
||||||
|
void gcode_G28();
|
||||||
|
void gcode_G29();
|
||||||
|
extern char conv[9];
|
||||||
|
|
||||||
|
void save_UBL_active_state_and_disable();
|
||||||
|
void restore_UBL_active_state_and_leave();
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
extern char lcd_status_message[];
|
||||||
|
void lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
|
||||||
|
|
||||||
|
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
|
||||||
|
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
|
||||||
|
|
||||||
|
extern bool G26_Debug_flag;
|
||||||
|
extern float last_specified_z;
|
||||||
|
extern float fade_scaling_factor_for_current_height;
|
||||||
|
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||||
|
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||||
|
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||||
|
|
||||||
|
class bed_leveling {
|
||||||
|
public:
|
||||||
|
struct ubl_state {
|
||||||
|
bool active = false;
|
||||||
|
float z_offset = 0.0;
|
||||||
|
int EEPROM_storage_slot = -1,
|
||||||
|
n_x = UBL_MESH_NUM_X_POINTS,
|
||||||
|
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||||
|
float mesh_x_min = UBL_MESH_MIN_X,
|
||||||
|
mesh_y_min = UBL_MESH_MIN_Y,
|
||||||
|
mesh_x_max = UBL_MESH_MAX_X,
|
||||||
|
mesh_y_max = UBL_MESH_MAX_Y,
|
||||||
|
mesh_x_dist = MESH_X_DIST,
|
||||||
|
mesh_y_dist = MESH_Y_DIST,
|
||||||
|
G29_Correction_Fade_Height = 10.0,
|
||||||
|
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
||||||
|
// point divide. So, we keep this number in both forms. The first
|
||||||
|
// is for the user. The second one is the one that is actually used
|
||||||
|
// again and again and again during the correction calculations.
|
||||||
|
|
||||||
|
unsigned char padding[24]; // This is just to allow room to add state variables without
|
||||||
|
// changing the location of data structures in the EEPROM.
|
||||||
|
// This is for compatability with future versions to keep
|
||||||
|
// people from having to regenerate thier mesh data.
|
||||||
|
//
|
||||||
|
// If you change the contents of this struct, please adjust
|
||||||
|
// the padding[] to keep the size the same!
|
||||||
|
} state, pre_initialized;
|
||||||
|
|
||||||
|
bed_leveling();
|
||||||
|
// ~bed_leveling(); // No destructor because this object never goes away!
|
||||||
|
|
||||||
|
void display_map(int);
|
||||||
|
|
||||||
|
void reset();
|
||||||
|
void invalidate();
|
||||||
|
|
||||||
|
void store_state();
|
||||||
|
void load_state();
|
||||||
|
void store_mesh(int);
|
||||||
|
void load_mesh(int);
|
||||||
|
|
||||||
|
bool sanity_check();
|
||||||
|
|
||||||
|
FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
|
||||||
|
FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
|
||||||
|
|
||||||
|
void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
|
||||||
|
|
||||||
|
int8_t get_cell_index_x(float x) {
|
||||||
|
int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||||
|
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||||
|
} // position. But with this defined this way, it is possible
|
||||||
|
// to extrapolate off of this point even further out. Probably
|
||||||
|
// that is OK because something else should be keeping that from
|
||||||
|
// happening and should not be worried about at this level.
|
||||||
|
int8_t get_cell_index_y(float y) {
|
||||||
|
int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||||
|
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||||
|
} // position. But with this defined this way, it is possible
|
||||||
|
// to extrapolate off of this point even further out. Probably
|
||||||
|
// that is OK because something else should be keeping that from
|
||||||
|
// happening and should not be worried about at this level.
|
||||||
|
|
||||||
|
int8_t find_closest_x_index(float x) {
|
||||||
|
int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||||
|
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int8_t find_closest_y_index(float y) {
|
||||||
|
int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||||
|
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* z2 --|
|
||||||
|
* z0 | |
|
||||||
|
* | | + (z2-z1)
|
||||||
|
* z1 | | |
|
||||||
|
* ---+-------------+--------+-- --|
|
||||||
|
* a1 a0 a2
|
||||||
|
* |<---delta_a---------->|
|
||||||
|
*
|
||||||
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||||
|
* find the expected Z Height at a position between two known Z-Height locations
|
||||||
|
*
|
||||||
|
* It is farly expensive with its 4 floating point additions and 2 floating point
|
||||||
|
* multiplications.
|
||||||
|
*/
|
||||||
|
inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
|
||||||
|
float delta_z = (z2 - z1);
|
||||||
|
float delta_a = (a0 - a1) / (a2 - a1);
|
||||||
|
return z1 + delta_a * delta_z;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||||
|
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||||
|
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||||
|
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||||
|
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||||
|
* point operations.
|
||||||
|
*/
|
||||||
|
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
|
||||||
|
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||||
|
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||||
|
SERIAL_ECHOPAIR(",yi=", yi);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
return NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||||
|
z1 = z_values[x1_i][yi],
|
||||||
|
z2 = z_values[x1_i + 1][yi],
|
||||||
|
dz = (z2 - z1);
|
||||||
|
|
||||||
|
return z1 + a0ma1diva2ma1 * dz;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||||
|
//
|
||||||
|
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
|
||||||
|
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||||
|
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||||
|
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
return NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||||
|
z1 = z_values[xi][y1_i],
|
||||||
|
z2 = z_values[xi][y1_i + 1],
|
||||||
|
dz = (z2 - z1);
|
||||||
|
|
||||||
|
return z1 + a0ma1diva2ma1 * dz;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||||
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||||
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||||
|
* on the Y position within the cell.
|
||||||
|
*/
|
||||||
|
float get_z_correction(float x0, float y0) {
|
||||||
|
int8_t cx = get_cell_index_x(x0),
|
||||||
|
cy = get_cell_index_y(y0);
|
||||||
|
|
||||||
|
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||||
|
SERIAL_ECHOPAIR(", y0=", y0);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
return 0.0; // this used to return state.z_offset
|
||||||
|
}
|
||||||
|
|
||||||
|
float z1 = calc_z0(x0,
|
||||||
|
map_x_index_to_bed_location(cx), z_values[cx][cy],
|
||||||
|
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
|
||||||
|
float z2 = calc_z0(x0,
|
||||||
|
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
|
||||||
|
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
|
||||||
|
float z0 = calc_z0(y0,
|
||||||
|
map_y_index_to_bed_location(cy), z1,
|
||||||
|
map_y_index_to_bed_location(cy + 1), z2);
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||||
|
SERIAL_ECHOPAIR(",", y0);
|
||||||
|
SERIAL_ECHOPGM(")=");
|
||||||
|
SERIAL_PROTOCOL_F(z0, 6);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPGM(" >>>---> ");
|
||||||
|
SERIAL_PROTOCOL_F(z0, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in blm.z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
|
||||||
|
SERIAL_ECHO(x0);
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
SERIAL_ECHO(y0);
|
||||||
|
SERIAL_ECHOLNPGM(" )");
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
return z0; // there used to be a +state.z_offset on this line
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||||
|
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||||
|
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||||
|
* returns it.
|
||||||
|
*
|
||||||
|
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
|
||||||
|
* or if the current Z Height is past the specified 'Fade Height'
|
||||||
|
*/
|
||||||
|
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) {
|
||||||
|
if (last_specified_z == current_z)
|
||||||
|
return fade_scaling_factor_for_current_height;
|
||||||
|
|
||||||
|
last_specified_z = current_z;
|
||||||
|
fade_scaling_factor_for_current_height =
|
||||||
|
state.active && current_z < state.G29_Correction_Fade_Height
|
||||||
|
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier)
|
||||||
|
: 0.0;
|
||||||
|
return fade_scaling_factor_for_current_height;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
extern bed_leveling blm;
|
||||||
|
extern int Unified_Bed_Leveling_EEPROM_start;
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
||||||
|
#endif // UNIFIED_BED_LEVELING_H
|
@ -0,0 +1,296 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#include "math.h"
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "hex_print_routines.h"
|
||||||
|
|
||||||
|
/**
|
||||||
|
* These variables used to be declared inside the bed_leveling class. We are going to still declare
|
||||||
|
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling
|
||||||
|
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the
|
||||||
|
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved
|
||||||
|
* back inside the bed leveling class.
|
||||||
|
*/
|
||||||
|
float last_specified_z,
|
||||||
|
fade_scaling_factor_for_current_height,
|
||||||
|
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||||
|
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||||
|
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||||
|
|
||||||
|
bed_leveling::bed_leveling() {
|
||||||
|
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||||
|
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||||
|
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||||
|
|
||||||
|
reset();
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::store_state() {
|
||||||
|
int k = E2END - sizeof(blm.state);
|
||||||
|
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::load_state() {
|
||||||
|
int k = E2END - sizeof(blm.state);
|
||||||
|
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||||
|
|
||||||
|
if (sanity_check())
|
||||||
|
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
|
||||||
|
|
||||||
|
// These lines can go away in a few weeks. They are just
|
||||||
|
// to make sure people updating thier firmware won't be using
|
||||||
|
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
|
||||||
|
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
|
||||||
|
store_state(); // dividing by it. Soon... all of the old structures will be
|
||||||
|
} // updated, but until then, we try to ease the transition
|
||||||
|
// for our Beta testers.
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::load_mesh(int m) {
|
||||||
|
int k = E2END - sizeof(blm.state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (m == -1) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
|
||||||
|
reset();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
j = k - (m + 1) * sizeof(z_values);
|
||||||
|
eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values));
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Mesh loaded from slot ");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLPGM(" at offset 0x");
|
||||||
|
prt_hex_word(j);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling:: store_mesh(int m) {
|
||||||
|
int k = E2END - sizeof(state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
|
||||||
|
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("k : ", k);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("j : ", j);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("m : ", m);
|
||||||
|
SERIAL_EOL;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
j = k - (m + 1) * sizeof(z_values);
|
||||||
|
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Mesh saved in slot ");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLPGM(" at offset 0x");
|
||||||
|
prt_hex_word(j);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::reset() {
|
||||||
|
state.active = false;
|
||||||
|
state.z_offset = 0;
|
||||||
|
state.EEPROM_storage_slot = -1;
|
||||||
|
|
||||||
|
ZERO(z_values);
|
||||||
|
|
||||||
|
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
|
||||||
|
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::invalidate() {
|
||||||
|
prt_hex_word((unsigned int)this);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
state.active = false;
|
||||||
|
state.z_offset = 0;
|
||||||
|
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||||
|
for (int y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||||
|
z_values[x][y] = NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::display_map(int map_type) {
|
||||||
|
float f, current_xi, current_yi;
|
||||||
|
int8_t i, j;
|
||||||
|
UNUSED(map_type);
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", 0);
|
||||||
|
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
|
||||||
|
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
|
||||||
|
// if (map_type || 1) {
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
// }
|
||||||
|
|
||||||
|
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
f = z_values[i][j];
|
||||||
|
|
||||||
|
// is the nozzle here? if so, mark the number
|
||||||
|
SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' ');
|
||||||
|
|
||||||
|
if (isnan(f))
|
||||||
|
SERIAL_PROTOCOLPGM(" . ");
|
||||||
|
else {
|
||||||
|
// if we don't do this, the columns won't line up nicely
|
||||||
|
if (f >= 0.0) SERIAL_CHAR(' ');
|
||||||
|
SERIAL_PROTOCOL_F(f, 5);
|
||||||
|
idle();
|
||||||
|
}
|
||||||
|
if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
|
||||||
|
SERIAL_CHAR(']');
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL(" ");
|
||||||
|
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
if (j) { // we want the (0,0) up tight against the block of numbers
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// if (map_type) {
|
||||||
|
SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X));
|
||||||
|
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
|
||||||
|
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
// }
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", 0);
|
||||||
|
SERIAL_ECHOPAIR(",", 0);
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
|
||||||
|
SERIAL_ECHOPAIR(",", 0);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool bed_leveling::sanity_check() {
|
||||||
|
uint8_t error_flag = 0;
|
||||||
|
|
||||||
|
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_min != UBL_MESH_MIN_X) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_max != UBL_MESH_MAX_X) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_dist != MESH_X_DIST) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_dist != MESH_Y_DIST) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
int k = E2END - sizeof(blm.state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (j < 1) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
|
||||||
|
// SERIAL_PROTOCOL(error_flag);
|
||||||
|
// SERIAL_EOL;
|
||||||
|
|
||||||
|
return !!error_flag;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,553 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#include "Marlin.h"
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "planner.h"
|
||||||
|
#include <avr/io.h>
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
extern void set_current_to_destination();
|
||||||
|
extern bool G26_Debug_flag;
|
||||||
|
void debug_current_and_destination(char *title);
|
||||||
|
|
||||||
|
void wait_for_button_press();
|
||||||
|
|
||||||
|
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
|
||||||
|
|
||||||
|
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
|
||||||
|
int left_flag, down_flag;
|
||||||
|
int current_xi, current_yi;
|
||||||
|
int dxi, dyi, xi_cnt, yi_cnt;
|
||||||
|
bool use_X_dist, inf_normalized_flag, inf_m_flag;
|
||||||
|
float x_start, y_start;
|
||||||
|
float x, y, z1, z2, z0 /*, z_optimized */;
|
||||||
|
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
|
||||||
|
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
|
||||||
|
float dx, dy, adx, ady, m, c;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||||
|
// as possible to determine if this is the case. If this move is within the same cell, we will
|
||||||
|
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||||
|
//
|
||||||
|
|
||||||
|
x_start = current_position[X_AXIS];
|
||||||
|
y_start = current_position[Y_AXIS];
|
||||||
|
z_start = current_position[Z_AXIS];
|
||||||
|
e_start = current_position[E_AXIS];
|
||||||
|
|
||||||
|
cell_start_xi = blm.get_cell_index_x(x_start);
|
||||||
|
cell_start_yi = blm.get_cell_index_y(y_start);
|
||||||
|
cell_dest_xi = blm.get_cell_index_x(x_end);
|
||||||
|
cell_dest_yi = blm.get_cell_index_y(y_end);
|
||||||
|
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
|
||||||
|
SERIAL_ECHO(x_end);
|
||||||
|
SERIAL_ECHOPGM(",ye=");
|
||||||
|
SERIAL_ECHO(y_end);
|
||||||
|
SERIAL_ECHOPGM(",ze=");
|
||||||
|
SERIAL_ECHO(z_end);
|
||||||
|
SERIAL_ECHOPGM(",ee=");
|
||||||
|
SERIAL_ECHO(e_end);
|
||||||
|
SERIAL_ECHOPGM(")\n");
|
||||||
|
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
|
||||||
|
// we don't need to break up the move
|
||||||
|
//
|
||||||
|
// If we are moving off the print bed, we are going to allow the move at this level.
|
||||||
|
// But we detect it and isolate it. For now, we just pass along the request.
|
||||||
|
//
|
||||||
|
|
||||||
|
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
|
||||||
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||||
|
// a reasonable correction would be.
|
||||||
|
|
||||||
|
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||||
|
set_current_to_destination();
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
||||||
|
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
||||||
|
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
||||||
|
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
||||||
|
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
||||||
|
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||||
|
|
||||||
|
FINAL_MOVE:
|
||||||
|
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
|
||||||
|
|
||||||
|
z1 = z_values[cell_dest_xi][cell_dest_yi] +
|
||||||
|
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
|
||||||
|
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||||
|
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||||
|
|
||||||
|
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
|
||||||
|
|
||||||
|
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( x_end, y_end);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" x_end=", x_end);
|
||||||
|
SERIAL_ECHOPAIR(" y_end=", y_end);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
||||||
|
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
||||||
|
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
||||||
|
// computation and in fact most lines are of this nature. We will check for that in the following
|
||||||
|
// blocks of code:
|
||||||
|
|
||||||
|
left_flag = 0;
|
||||||
|
down_flag = 0;
|
||||||
|
inf_m_flag = false;
|
||||||
|
inf_normalized_flag = false;
|
||||||
|
|
||||||
|
dx = x_end - x_start;
|
||||||
|
dy = y_end - y_start;
|
||||||
|
|
||||||
|
if (dx<0.0) { // figure out which way we need to move to get to the next cell
|
||||||
|
dxi = -1;
|
||||||
|
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
|
||||||
|
}
|
||||||
|
else { // We may as well generate the appropriate values for adx and ady right now
|
||||||
|
dxi = 1; // to save setting up the abs() function call and actually doing the call.
|
||||||
|
adx = dx;
|
||||||
|
}
|
||||||
|
if (dy<0.0) {
|
||||||
|
dyi = -1;
|
||||||
|
ady = -dy; // absolute value of dy
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
dyi = 1;
|
||||||
|
ady = dy;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dx<0.0) left_flag = 1;
|
||||||
|
if (dy<0.0) down_flag = 1;
|
||||||
|
if (cell_start_xi == cell_dest_xi) dxi = 0;
|
||||||
|
if (cell_start_yi == cell_dest_yi) dyi = 0;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Compute the scaling factor for the extruder for each partial move.
|
||||||
|
// We need to watch out for zero length moves because it will cause us to
|
||||||
|
// have an infinate scaling factor. We are stuck doing a floating point
|
||||||
|
// divide to get our scaling factor, but after that, we just multiply by this
|
||||||
|
// number. We also pick our scaling factor based on whether the X or Y
|
||||||
|
// component is larger. We use the biggest of the two to preserve precision.
|
||||||
|
//
|
||||||
|
if ( adx > ady ) {
|
||||||
|
use_X_dist = true;
|
||||||
|
on_axis_distance = x_end-x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
use_X_dist = false;
|
||||||
|
on_axis_distance = y_end-y_start;
|
||||||
|
}
|
||||||
|
e_position = e_end - e_start;
|
||||||
|
e_normalized_dist = e_position / on_axis_distance;
|
||||||
|
|
||||||
|
z_position = z_end - z_start;
|
||||||
|
z_normalized_dist = z_position / on_axis_distance;
|
||||||
|
|
||||||
|
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
|
||||||
|
inf_normalized_flag = true;
|
||||||
|
}
|
||||||
|
current_xi = cell_start_xi;
|
||||||
|
current_yi = cell_start_yi;
|
||||||
|
|
||||||
|
m = dy / dx;
|
||||||
|
c = y_start - m*x_start;
|
||||||
|
if (m == INFINITY || m == -INFINITY) {
|
||||||
|
inf_m_flag = true;
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// This block handles vertical lines. These are lines that stay within the same
|
||||||
|
// X Cell column. They do not need to be perfectly vertical. They just can
|
||||||
|
// not cross into another X Cell column.
|
||||||
|
//
|
||||||
|
if (dxi == 0) { // Check for a vertical line
|
||||||
|
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||||
|
while (current_yi != cell_dest_yi + down_flag) {
|
||||||
|
current_yi += dyi;
|
||||||
|
next_mesh_line_y = mesh_index_to_Y_location[current_yi];
|
||||||
|
if (inf_m_flag) {
|
||||||
|
x = x_start; // if the slope of the line is infinite, we won't do the calculations
|
||||||
|
}
|
||||||
|
// we know the next X is the same so we can recover and continue!
|
||||||
|
else {
|
||||||
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
||||||
|
}
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "VERTICAL z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" x=", x);
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
y = mesh_index_to_Y_location[current_yi];
|
||||||
|
|
||||||
|
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||||
|
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
||||||
|
// happens, it might be best to remove the check and always 'schedule' the move because
|
||||||
|
// the planner.buffer_line() routine will filter it if that happens.
|
||||||
|
if ( y!=y_start) {
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
} //else printf("FIRST MOVE PRUNED ");
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
||||||
|
//
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// This block handles horizontal lines. These are lines that stay within the same
|
||||||
|
// Y Cell row. They do not need to be perfectly horizontal. They just can
|
||||||
|
// not cross into another Y Cell row.
|
||||||
|
//
|
||||||
|
|
||||||
|
if (dyi == 0) { // Check for a horiziontal line
|
||||||
|
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
||||||
|
// edge of this cell for the first move.
|
||||||
|
while (current_xi != cell_dest_xi + left_flag) {
|
||||||
|
current_xi += dxi;
|
||||||
|
next_mesh_line_x = mesh_index_to_X_location[current_xi];
|
||||||
|
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "HORIZONTAL z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
|
||||||
|
SERIAL_ECHOPAIR(" y=", y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
x = mesh_index_to_X_location[current_xi];
|
||||||
|
|
||||||
|
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||||
|
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
||||||
|
// that happens, it might be best to remove the check and always 'schedule' the move because
|
||||||
|
// the planner.buffer_line() routine will filter it if that happens.
|
||||||
|
if ( x!=x_start) {
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
} //else printf("FIRST MOVE PRUNED ");
|
||||||
|
}
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// This block handles the generic case of a line crossing both X and Y
|
||||||
|
// Mesh lines.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
|
||||||
|
xi_cnt = cell_start_xi - cell_dest_xi;
|
||||||
|
if ( xi_cnt < 0 ) {
|
||||||
|
xi_cnt = -xi_cnt;
|
||||||
|
}
|
||||||
|
|
||||||
|
yi_cnt = cell_start_yi - cell_dest_yi;
|
||||||
|
if ( yi_cnt < 0 ) {
|
||||||
|
yi_cnt = -yi_cnt;
|
||||||
|
}
|
||||||
|
|
||||||
|
current_xi += left_flag;
|
||||||
|
current_yi += down_flag;
|
||||||
|
|
||||||
|
while ( xi_cnt>0 || yi_cnt>0 ) {
|
||||||
|
|
||||||
|
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
|
||||||
|
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
|
||||||
|
|
||||||
|
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||||
|
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||||
|
// about m being equal to 0.0 If this was the case, we would have
|
||||||
|
// detected this as a vertical line move up above and we wouldn't
|
||||||
|
// be down here doing a generic type of move.
|
||||||
|
|
||||||
|
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
|
||||||
|
//
|
||||||
|
// Yes! Crossing a Y Mesh Line next
|
||||||
|
//
|
||||||
|
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
|
||||||
|
/*
|
||||||
|
|
||||||
|
z_optimized = z0;
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "General_1: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
|
||||||
|
SERIAL_ECHOPAIR(" x=", x);
|
||||||
|
}
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
if ( use_X_dist ) {
|
||||||
|
on_axis_distance = x - x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
on_axis_distance = next_mesh_line_y - y_start;
|
||||||
|
}
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
current_yi += dyi;
|
||||||
|
yi_cnt--;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
//
|
||||||
|
// Yes! Crossing a X Mesh Line next
|
||||||
|
//
|
||||||
|
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
|
||||||
|
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "General_2: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
|
||||||
|
SERIAL_ECHOPAIR(" y=", y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
if ( use_X_dist ) {
|
||||||
|
on_axis_distance = next_mesh_line_x - x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
on_axis_distance = y - y_start;
|
||||||
|
}
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
current_xi += dxi;
|
||||||
|
xi_cnt--;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[0] != x_end || current_position[1] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void wait_for_button_press() {
|
||||||
|
// if ( !been_to_2_6 )
|
||||||
|
//return; // bob - I think this should be commented out
|
||||||
|
|
||||||
|
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
|
||||||
|
SET_OUTPUT(64);
|
||||||
|
while (READ(66) & 0x01) idle();
|
||||||
|
|
||||||
|
delay(50);
|
||||||
|
while (!(READ(66) & 0x01)) idle();
|
||||||
|
delay(50);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
@ -0,0 +1,47 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||||
|
|
||||||
|
#include "hex_print_routines.h"
|
||||||
|
|
||||||
|
void prt_hex_nibble(uint8_t n) {
|
||||||
|
if (n <= 9)
|
||||||
|
SERIAL_ECHO(n);
|
||||||
|
else
|
||||||
|
SERIAL_ECHO((char)('A' + n - 10));
|
||||||
|
delay(3);
|
||||||
|
}
|
||||||
|
|
||||||
|
void prt_hex_byte(uint8_t b) {
|
||||||
|
prt_hex_nibble((b & 0xF0) >> 4);
|
||||||
|
prt_hex_nibble(b & 0x0F);
|
||||||
|
}
|
||||||
|
|
||||||
|
void prt_hex_word(uint16_t w) {
|
||||||
|
prt_hex_byte((w & 0xFF00) >> 8);
|
||||||
|
prt_hex_byte(w & 0x0FF);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
|
@ -0,0 +1,33 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef HEX_PRINT_ROUTINES_H
|
||||||
|
#define HEX_PRINT_ROUTINES_H
|
||||||
|
|
||||||
|
//
|
||||||
|
// 3 support routines to print hex numbers. We can print a nibble, byte and word
|
||||||
|
//
|
||||||
|
void prt_hex_nibble(uint8_t n);
|
||||||
|
void prt_hex_byte(uint8_t b);
|
||||||
|
void prt_hex_word(uint16_t w);
|
||||||
|
|
||||||
|
#endif // HEX_PRINT_ROUTINES_H
|
Loading…
Reference in New Issue