|
|
|
@ -528,33 +528,69 @@ void Stepper::isr() {
|
|
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Estimate the number of cycles that the stepper logic already takes
|
|
|
|
|
* up between the start and stop of the X stepper pulse.
|
|
|
|
|
*
|
|
|
|
|
* Currently this uses very modest estimates of around 5 cycles.
|
|
|
|
|
* True values may be derived by careful testing.
|
|
|
|
|
*
|
|
|
|
|
* Once any delay is added, the cost of the delay code itself
|
|
|
|
|
* may be subtracted from this value to get a more accurate delay.
|
|
|
|
|
* Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
|
|
|
|
|
* Longer delays use a loop. The resolution is 8 cycles.
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_X_STEP
|
|
|
|
|
#define _COUNT_STEPPERS_1 1
|
|
|
|
|
#define _CYCLE_APPROX_1 5
|
|
|
|
|
#else
|
|
|
|
|
#define _COUNT_STEPPERS_1 0
|
|
|
|
|
#define _CYCLE_APPROX_1 0
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
|
|
|
|
|
#define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
|
|
|
|
|
#else
|
|
|
|
|
#define _CYCLE_APPROX_2 _CYCLE_APPROX_1
|
|
|
|
|
#endif
|
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
|
#define _COUNT_STEPPERS_2 _COUNT_STEPPERS_1 + 1
|
|
|
|
|
#define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
|
|
|
|
|
#else
|
|
|
|
|
#define _COUNT_STEPPERS_2 _COUNT_STEPPERS_1
|
|
|
|
|
#define _CYCLE_APPROX_3 _CYCLE_APPROX_2
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
|
|
|
#define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
|
|
|
|
|
#else
|
|
|
|
|
#define _CYCLE_APPROX_4 _CYCLE_APPROX_3
|
|
|
|
|
#endif
|
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
|
#define _COUNT_STEPPERS_3 _COUNT_STEPPERS_2 + 1
|
|
|
|
|
#define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
|
|
|
|
|
#else
|
|
|
|
|
#define _COUNT_STEPPERS_3 _COUNT_STEPPERS_2
|
|
|
|
|
#define _CYCLE_APPROX_5 _CYCLE_APPROX_4
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
|
|
|
#define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
|
|
|
|
|
#else
|
|
|
|
|
#define _CYCLE_APPROX_6 _CYCLE_APPROX_5
|
|
|
|
|
#endif
|
|
|
|
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
|
|
|
#define _COUNT_STEPPERS_4 _COUNT_STEPPERS_3 + 1
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
|
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
|
|
|
|
|
#else
|
|
|
|
|
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
|
|
|
|
|
#endif
|
|
|
|
|
#else
|
|
|
|
|
#define _COUNT_STEPPERS_4 _COUNT_STEPPERS_3
|
|
|
|
|
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define CYCLES_EATEN_XYZE ((_COUNT_STEPPERS_4) * 5)
|
|
|
|
|
#define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
|
|
|
|
|
#define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
|
|
|
|
|
|
|
|
|
|
// If a minimum pulse time was specified get the timer 0 value
|
|
|
|
|
// which increments every 4µs on 16MHz and every 3.2µs on 20MHz.
|
|
|
|
|
// Two or 3 counts of TCNT0 should be a sufficient delay.
|
|
|
|
|
/**
|
|
|
|
|
* If a minimum pulse time was specified get the timer 0 value.
|
|
|
|
|
*
|
|
|
|
|
* TCNT0 has an 8x prescaler, so it increments every 8 cycles.
|
|
|
|
|
* That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
|
|
|
|
|
* 20 counts of TCNT0 -by itself- is a good pulse delay.
|
|
|
|
|
* 10µs = 160 or 200 cycles.
|
|
|
|
|
*/
|
|
|
|
|
#if EXTRA_CYCLES_XYZE > 20
|
|
|
|
|
uint32_t pulse_start = TCNT0;
|
|
|
|
|
#endif
|
|
|
|
@ -627,7 +663,7 @@ void Stepper::isr() {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// For minimum pulse time wait before stopping pulses
|
|
|
|
|
// For minimum pulse time wait after stopping pulses also
|
|
|
|
|
#if EXTRA_CYCLES_XYZE > 20
|
|
|
|
|
if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
|
|
|
|
#elif EXTRA_CYCLES_XYZE > 0
|
|
|
|
|