Merge pull request #4837 from thinkyhead/rc_nonlinear_in_planner
Handle nonlinear bed-leveling in Planner
This commit is contained in:
		
						commit
						127d796420
					
				| @ -675,7 +675,7 @@ | |||||||
|     #endif |     #endif | ||||||
|   #endif |   #endif | ||||||
| 
 | 
 | ||||||
|   #define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_LINEAR)) |   #define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE)) | ||||||
| 
 | 
 | ||||||
|   /**
 |   /**
 | ||||||
|    * Buzzer/Speaker |    * Buzzer/Speaker | ||||||
|  | |||||||
| @ -303,12 +303,11 @@ float code_value_temp_diff(); | |||||||
| 
 | 
 | ||||||
| #if IS_KINEMATIC | #if IS_KINEMATIC | ||||||
|   extern float delta[ABC]; |   extern float delta[ABC]; | ||||||
|   void inverse_kinematics(const float cartesian[XYZ]); |   void inverse_kinematics(const float logical[XYZ]); | ||||||
| #endif | #endif | ||||||
| 
 | 
 | ||||||
| #if ENABLED(DELTA) | #if ENABLED(DELTA) | ||||||
|   extern float delta[ABC], |   extern float endstop_adj[ABC], | ||||||
|                endstop_adj[ABC], |  | ||||||
|                delta_radius, |                delta_radius, | ||||||
|                delta_diagonal_rod, |                delta_diagonal_rod, | ||||||
|                delta_segments_per_second, |                delta_segments_per_second, | ||||||
| @ -322,7 +321,7 @@ float code_value_temp_diff(); | |||||||
| 
 | 
 | ||||||
| #if ENABLED(AUTO_BED_LEVELING_NONLINEAR) | #if ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||||
|   extern int nonlinear_grid_spacing[2]; |   extern int nonlinear_grid_spacing[2]; | ||||||
|   void adjust_delta(float cartesian[XYZ]); |   float nonlinear_z_offset(float logical[XYZ]); | ||||||
| #endif | #endif | ||||||
| 
 | 
 | ||||||
| #if ENABLED(Z_DUAL_ENDSTOPS) | #if ENABLED(Z_DUAL_ENDSTOPS) | ||||||
|  | |||||||
| @ -400,7 +400,6 @@ static uint8_t target_extruder; | |||||||
| 
 | 
 | ||||||
| #if ENABLED(AUTO_BED_LEVELING_FEATURE) | #if ENABLED(AUTO_BED_LEVELING_FEATURE) | ||||||
|   float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); |   float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); | ||||||
|   bool bed_leveling_in_progress = false; |  | ||||||
|   #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s |   #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s | ||||||
| #elif defined(XY_PROBE_SPEED) | #elif defined(XY_PROBE_SPEED) | ||||||
|   #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) |   #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) | ||||||
| @ -658,16 +657,20 @@ inline void sync_plan_position() { | |||||||
| inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } | inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } | ||||||
| 
 | 
 | ||||||
| #if IS_KINEMATIC | #if IS_KINEMATIC | ||||||
|  | 
 | ||||||
|   inline void sync_plan_position_kinematic() { |   inline void sync_plan_position_kinematic() { | ||||||
|     #if ENABLED(DEBUG_LEVELING_FEATURE) |     #if ENABLED(DEBUG_LEVELING_FEATURE) | ||||||
|       if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); |       if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); | ||||||
|     #endif |     #endif | ||||||
|     inverse_kinematics(current_position); |     inverse_kinematics(current_position); | ||||||
|     planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); |     planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]); | ||||||
|   } |   } | ||||||
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() |   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() | ||||||
|  | 
 | ||||||
| #else | #else | ||||||
|  | 
 | ||||||
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() |   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() | ||||||
|  | 
 | ||||||
| #endif | #endif | ||||||
| 
 | 
 | ||||||
| #if ENABLED(SDSUPPORT) | #if ENABLED(SDSUPPORT) | ||||||
| @ -795,7 +798,6 @@ void setup_homepin(void) { | |||||||
|   #endif |   #endif | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
| void setup_photpin() { | void setup_photpin() { | ||||||
|   #if HAS_PHOTOGRAPH |   #if HAS_PHOTOGRAPH | ||||||
|     OUT_WRITE(PHOTOGRAPH_PIN, LOW); |     OUT_WRITE(PHOTOGRAPH_PIN, LOW); | ||||||
| @ -1479,7 +1481,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position, | |||||||
|     #endif |     #endif | ||||||
|     refresh_cmd_timeout(); |     refresh_cmd_timeout(); | ||||||
|     inverse_kinematics(destination); |     inverse_kinematics(destination); | ||||||
|     planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder); |     planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder); | ||||||
|     set_current_to_destination(); |     set_current_to_destination(); | ||||||
|   } |   } | ||||||
| #endif | #endif | ||||||
| @ -3431,8 +3433,6 @@ inline void gcode_G28() { | |||||||
|     // Deploy the probe. Probe will raise if needed.
 |     // Deploy the probe. Probe will raise if needed.
 | ||||||
|     if (DEPLOY_PROBE()) return; |     if (DEPLOY_PROBE()) return; | ||||||
| 
 | 
 | ||||||
|     bed_leveling_in_progress = true; |  | ||||||
| 
 |  | ||||||
|     float xProbe, yProbe, measured_z = 0; |     float xProbe, yProbe, measured_z = 0; | ||||||
| 
 | 
 | ||||||
|     #if ENABLED(AUTO_BED_LEVELING_GRID) |     #if ENABLED(AUTO_BED_LEVELING_GRID) | ||||||
| @ -3573,6 +3573,8 @@ inline void gcode_G28() { | |||||||
| 
 | 
 | ||||||
|     #elif ENABLED(AUTO_BED_LEVELING_LINEAR) |     #elif ENABLED(AUTO_BED_LEVELING_LINEAR) | ||||||
| 
 | 
 | ||||||
|  |       // For LINEAR leveling calculate matrix, print reports, correct the position
 | ||||||
|  | 
 | ||||||
|       // solve lsq problem
 |       // solve lsq problem
 | ||||||
|       double plane_equation_coefficients[3]; |       double plane_equation_coefficients[3]; | ||||||
|       qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); |       qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); | ||||||
| @ -3666,6 +3668,8 @@ inline void gcode_G28() { | |||||||
|         } |         } | ||||||
|       } //do_topography_map
 |       } //do_topography_map
 | ||||||
| 
 | 
 | ||||||
|  |       // For LINEAR and 3POINT leveling correct the current position
 | ||||||
|  | 
 | ||||||
|       if (verbose_level > 0) |       if (verbose_level > 0) | ||||||
|         planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); |         planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); | ||||||
| 
 | 
 | ||||||
| @ -3735,8 +3739,6 @@ inline void gcode_G28() { | |||||||
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); |       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); | ||||||
|     #endif |     #endif | ||||||
| 
 | 
 | ||||||
|     bed_leveling_in_progress = false; |  | ||||||
| 
 |  | ||||||
|     report_current_position(); |     report_current_position(); | ||||||
| 
 | 
 | ||||||
|     KEEPALIVE_STATE(IN_HANDLER); |     KEEPALIVE_STATE(IN_HANDLER); | ||||||
| @ -5075,22 +5077,20 @@ static void report_current_position() { | |||||||
| 
 | 
 | ||||||
|   #if IS_SCARA |   #if IS_SCARA | ||||||
|     SERIAL_PROTOCOLPGM("SCARA Theta:"); |     SERIAL_PROTOCOLPGM("SCARA Theta:"); | ||||||
|     SERIAL_PROTOCOL(delta[X_AXIS]); |     SERIAL_PROTOCOL(delta[A_AXIS]); | ||||||
|     SERIAL_PROTOCOLPGM("   Psi+Theta:"); |     SERIAL_PROTOCOLPGM("   Psi+Theta:"); | ||||||
|     SERIAL_PROTOCOL(delta[Y_AXIS]); |     SERIAL_PROTOCOLLN(delta[B_AXIS]); | ||||||
|     SERIAL_EOL; |  | ||||||
| 
 | 
 | ||||||
|     SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); |     SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); | ||||||
|     SERIAL_PROTOCOL(delta[X_AXIS]); |     SERIAL_PROTOCOL(delta[A_AXIS]); | ||||||
|     SERIAL_PROTOCOLPGM("   Psi+Theta (90):"); |     SERIAL_PROTOCOLPGM("   Psi+Theta (90):"); | ||||||
|     SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); |     SERIAL_PROTOCOLLN(delta[B_AXIS] - delta[A_AXIS] - 90); | ||||||
|     SERIAL_EOL; |  | ||||||
| 
 | 
 | ||||||
|     SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); |     SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); | ||||||
|     SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]); |     SERIAL_PROTOCOL(delta[A_AXIS] / 90 * planner.axis_steps_per_mm[A_AXIS]); | ||||||
|     SERIAL_PROTOCOLPGM("   Psi+Theta:"); |     SERIAL_PROTOCOLPGM("   Psi+Theta:"); | ||||||
|     SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]); |     SERIAL_PROTOCOLLN((delta[B_AXIS] - delta[A_AXIS]) / 90 * planner.axis_steps_per_mm[A_AXIS]); | ||||||
|     SERIAL_EOL; SERIAL_EOL; |     SERIAL_EOL; | ||||||
|   #endif |   #endif | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| @ -6160,7 +6160,7 @@ inline void gcode_M503() { | |||||||
|     // Define runplan for move axes
 |     // Define runplan for move axes
 | ||||||
|     #if IS_KINEMATIC |     #if IS_KINEMATIC | ||||||
|       #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ |       #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ | ||||||
|                                  planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); |                                  planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); | ||||||
|     #else |     #else | ||||||
|       #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S); |       #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S); | ||||||
|     #endif |     #endif | ||||||
| @ -6282,8 +6282,8 @@ inline void gcode_M503() { | |||||||
|     #if IS_KINEMATIC |     #if IS_KINEMATIC | ||||||
|       // Move XYZ to starting position, then E
 |       // Move XYZ to starting position, then E
 | ||||||
|       inverse_kinematics(lastpos); |       inverse_kinematics(lastpos); | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); | ||||||
|     #else |     #else | ||||||
|       // Move XY to starting position, then Z, then E
 |       // Move XY to starting position, then Z, then E
 | ||||||
|       destination[X_AXIS] = lastpos[X_AXIS]; |       destination[X_AXIS] = lastpos[X_AXIS]; | ||||||
| @ -7637,6 +7637,48 @@ void ok_to_send() { | |||||||
| 
 | 
 | ||||||
| #endif | #endif | ||||||
| 
 | 
 | ||||||
|  | #if ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||||
|  | 
 | ||||||
|  |   // Get the Z adjustment for non-linear bed leveling
 | ||||||
|  |   float nonlinear_z_offset(float cartesian[XYZ]) { | ||||||
|  |     if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
 | ||||||
|  | 
 | ||||||
|  |     int half_x = (ABL_GRID_POINTS_X - 1) / 2, | ||||||
|  |         half_y = (ABL_GRID_POINTS_Y - 1) / 2; | ||||||
|  |     float hx2 = half_x - 0.001, hx1 = -hx2, | ||||||
|  |           hy2 = half_y - 0.001, hy1 = -hy2, | ||||||
|  |           grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])), | ||||||
|  |           grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS])); | ||||||
|  |     int   floor_x = floor(grid_x), floor_y = floor(grid_y); | ||||||
|  |     float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, | ||||||
|  |           z1 = bed_level_grid[floor_x + half_x][floor_y + half_y], | ||||||
|  |           z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1], | ||||||
|  |           z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y], | ||||||
|  |           z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1], | ||||||
|  |           left = (1 - ratio_y) * z1 + ratio_y * z2, | ||||||
|  |           right = (1 - ratio_y) * z3 + ratio_y * z4; | ||||||
|  | 
 | ||||||
|  |     /*
 | ||||||
|  |       SERIAL_ECHOPAIR("grid_x=", grid_x); | ||||||
|  |       SERIAL_ECHOPAIR(" grid_y=", grid_y); | ||||||
|  |       SERIAL_ECHOPAIR(" floor_x=", floor_x); | ||||||
|  |       SERIAL_ECHOPAIR(" floor_y=", floor_y); | ||||||
|  |       SERIAL_ECHOPAIR(" ratio_x=", ratio_x); | ||||||
|  |       SERIAL_ECHOPAIR(" ratio_y=", ratio_y); | ||||||
|  |       SERIAL_ECHOPAIR(" z1=", z1); | ||||||
|  |       SERIAL_ECHOPAIR(" z2=", z2); | ||||||
|  |       SERIAL_ECHOPAIR(" z3=", z3); | ||||||
|  |       SERIAL_ECHOPAIR(" z4=", z4); | ||||||
|  |       SERIAL_ECHOPAIR(" left=", left); | ||||||
|  |       SERIAL_ECHOPAIR(" right=", right); | ||||||
|  |       SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right); | ||||||
|  |     //*/
 | ||||||
|  | 
 | ||||||
|  |     return (1 - ratio_x) * left + ratio_x * right; | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  | #endif // AUTO_BED_LEVELING_NONLINEAR
 | ||||||
|  | 
 | ||||||
| #if ENABLED(DELTA) | #if ENABLED(DELTA) | ||||||
| 
 | 
 | ||||||
|   /**
 |   /**
 | ||||||
| @ -7827,50 +7869,6 @@ void ok_to_send() { | |||||||
|     forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); |     forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); | ||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
|   #if ENABLED(AUTO_BED_LEVELING_NONLINEAR) |  | ||||||
| 
 |  | ||||||
|     // Adjust print surface height by linear interpolation over the bed_level array.
 |  | ||||||
|     void adjust_delta(float cartesian[XYZ]) { |  | ||||||
|       if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
 |  | ||||||
| 
 |  | ||||||
|       int half_x = (ABL_GRID_POINTS_X - 1) / 2, |  | ||||||
|           half_y = (ABL_GRID_POINTS_Y - 1) / 2; |  | ||||||
|       float hx2 = half_x - 0.001, hx1 = -hx2, |  | ||||||
|             hy2 = half_y - 0.001, hy1 = -hy2, |  | ||||||
|             grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])), |  | ||||||
|             grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS])); |  | ||||||
|       int   floor_x = floor(grid_x), floor_y = floor(grid_y); |  | ||||||
|       float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, |  | ||||||
|             z1 = bed_level_grid[floor_x + half_x][floor_y + half_y], |  | ||||||
|             z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1], |  | ||||||
|             z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y], |  | ||||||
|             z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1], |  | ||||||
|             left = (1 - ratio_y) * z1 + ratio_y * z2, |  | ||||||
|             right = (1 - ratio_y) * z3 + ratio_y * z4, |  | ||||||
|             offset = (1 - ratio_x) * left + ratio_x * right; |  | ||||||
| 
 |  | ||||||
|       delta[X_AXIS] += offset; |  | ||||||
|       delta[Y_AXIS] += offset; |  | ||||||
|       delta[Z_AXIS] += offset; |  | ||||||
| 
 |  | ||||||
|       /**
 |  | ||||||
|       SERIAL_ECHOPAIR("grid_x=", grid_x); |  | ||||||
|       SERIAL_ECHOPAIR(" grid_y=", grid_y); |  | ||||||
|       SERIAL_ECHOPAIR(" floor_x=", floor_x); |  | ||||||
|       SERIAL_ECHOPAIR(" floor_y=", floor_y); |  | ||||||
|       SERIAL_ECHOPAIR(" ratio_x=", ratio_x); |  | ||||||
|       SERIAL_ECHOPAIR(" ratio_y=", ratio_y); |  | ||||||
|       SERIAL_ECHOPAIR(" z1=", z1); |  | ||||||
|       SERIAL_ECHOPAIR(" z2=", z2); |  | ||||||
|       SERIAL_ECHOPAIR(" z3=", z3); |  | ||||||
|       SERIAL_ECHOPAIR(" z4=", z4); |  | ||||||
|       SERIAL_ECHOPAIR(" left=", left); |  | ||||||
|       SERIAL_ECHOPAIR(" right=", right); |  | ||||||
|       SERIAL_ECHOLNPAIR(" offset=", offset); |  | ||||||
|       */ |  | ||||||
|     } |  | ||||||
|   #endif // AUTO_BED_LEVELING_NONLINEAR
 |  | ||||||
| 
 |  | ||||||
| #endif // DELTA
 | #endif // DELTA
 | ||||||
| 
 | 
 | ||||||
| /**
 | /**
 | ||||||
| @ -7992,9 +7990,9 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { | |||||||
|    * This calls planner.buffer_line several times, adding |    * This calls planner.buffer_line several times, adding | ||||||
|    * small incremental moves for DELTA or SCARA. |    * small incremental moves for DELTA or SCARA. | ||||||
|    */ |    */ | ||||||
|   inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { |   inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) { | ||||||
|     float difference[NUM_AXIS]; |     float difference[NUM_AXIS]; | ||||||
|     LOOP_XYZE(i) difference[i] = target[i] - current_position[i]; |     LOOP_XYZE(i) difference[i] = logical[i] - current_position[i]; | ||||||
| 
 | 
 | ||||||
|     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); |     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); | ||||||
|     if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); |     if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); | ||||||
| @ -8013,18 +8011,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { | |||||||
|       float fraction = float(s) * inv_steps; |       float fraction = float(s) * inv_steps; | ||||||
| 
 | 
 | ||||||
|       LOOP_XYZE(i) |       LOOP_XYZE(i) | ||||||
|         target[i] = current_position[i] + difference[i] * fraction; |         logical[i] = current_position[i] + difference[i] * fraction; | ||||||
| 
 | 
 | ||||||
|       inverse_kinematics(target); |       inverse_kinematics(logical); | ||||||
| 
 | 
 | ||||||
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |       //DEBUG_POS("prepare_kinematic_move_to", logical);
 | ||||||
|         if (!bed_leveling_in_progress) adjust_delta(target); |  | ||||||
|       #endif |  | ||||||
| 
 |  | ||||||
|       //DEBUG_POS("prepare_kinematic_move_to", target);
 |  | ||||||
|       //DEBUG_POS("prepare_kinematic_move_to", delta);
 |       //DEBUG_POS("prepare_kinematic_move_to", delta);
 | ||||||
| 
 | 
 | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder); | ||||||
|     } |     } | ||||||
|     return true; |     return true; | ||||||
|   } |   } | ||||||
| @ -8156,20 +8150,20 @@ void prepare_move_to_destination() { | |||||||
|    * options for G2/G3 arc generation. In future these options may be GCode tunable. |    * options for G2/G3 arc generation. In future these options may be GCode tunable. | ||||||
|    */ |    */ | ||||||
|   void plan_arc( |   void plan_arc( | ||||||
|     float target[NUM_AXIS], // Destination position
 |     float logical[NUM_AXIS], // Destination position
 | ||||||
|     float* offset,          // Center of rotation relative to current_position
 |     float* offset,           // Center of rotation relative to current_position
 | ||||||
|     uint8_t clockwise       // Clockwise?
 |     uint8_t clockwise        // Clockwise?
 | ||||||
|   ) { |   ) { | ||||||
| 
 | 
 | ||||||
|     float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]), |     float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]), | ||||||
|           center_X = current_position[X_AXIS] + offset[X_AXIS], |           center_X = current_position[X_AXIS] + offset[X_AXIS], | ||||||
|           center_Y = current_position[Y_AXIS] + offset[Y_AXIS], |           center_Y = current_position[Y_AXIS] + offset[Y_AXIS], | ||||||
|           linear_travel = target[Z_AXIS] - current_position[Z_AXIS], |           linear_travel = logical[Z_AXIS] - current_position[Z_AXIS], | ||||||
|           extruder_travel = target[E_AXIS] - current_position[E_AXIS], |           extruder_travel = logical[E_AXIS] - current_position[E_AXIS], | ||||||
|           r_X = -offset[X_AXIS],  // Radius vector from center to current location
 |           r_X = -offset[X_AXIS],  // Radius vector from center to current location
 | ||||||
|           r_Y = -offset[Y_AXIS], |           r_Y = -offset[Y_AXIS], | ||||||
|           rt_X = target[X_AXIS] - center_X, |           rt_X = logical[X_AXIS] - center_X, | ||||||
|           rt_Y = target[Y_AXIS] - center_Y; |           rt_Y = logical[Y_AXIS] - center_Y; | ||||||
| 
 | 
 | ||||||
|     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 |     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | ||||||
|     float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); |     float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); | ||||||
| @ -8177,7 +8171,7 @@ void prepare_move_to_destination() { | |||||||
|     if (clockwise) angular_travel -= RADIANS(360); |     if (clockwise) angular_travel -= RADIANS(360); | ||||||
| 
 | 
 | ||||||
|     // Make a circle if the angular rotation is 0
 |     // Make a circle if the angular rotation is 0
 | ||||||
|     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) |     if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS]) | ||||||
|       angular_travel += RADIANS(360); |       angular_travel += RADIANS(360); | ||||||
| 
 | 
 | ||||||
|     float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel)); |     float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel)); | ||||||
| @ -8271,10 +8265,7 @@ void prepare_move_to_destination() { | |||||||
| 
 | 
 | ||||||
|       #if IS_KINEMATIC |       #if IS_KINEMATIC | ||||||
|         inverse_kinematics(arc_target); |         inverse_kinematics(arc_target); | ||||||
|         #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |         planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); | ||||||
|           adjust_delta(arc_target); |  | ||||||
|         #endif |  | ||||||
|         planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); |  | ||||||
|       #else |       #else | ||||||
|         planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); |         planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); | ||||||
|       #endif |       #endif | ||||||
| @ -8282,13 +8273,10 @@ void prepare_move_to_destination() { | |||||||
| 
 | 
 | ||||||
|     // Ensure last segment arrives at target location.
 |     // Ensure last segment arrives at target location.
 | ||||||
|     #if IS_KINEMATIC |     #if IS_KINEMATIC | ||||||
|       inverse_kinematics(target); |       inverse_kinematics(logical); | ||||||
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); | ||||||
|         adjust_delta(target); |  | ||||||
|       #endif |  | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); |  | ||||||
|     #else |     #else | ||||||
|       planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); |       planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); | ||||||
|     #endif |     #endif | ||||||
| 
 | 
 | ||||||
|     // As far as the parser is concerned, the position is now == target. In reality the
 |     // As far as the parser is concerned, the position is now == target. In reality the
 | ||||||
| @ -8303,7 +8291,7 @@ void prepare_move_to_destination() { | |||||||
|   void plan_cubic_move(const float offset[4]) { |   void plan_cubic_move(const float offset[4]) { | ||||||
|     cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); |     cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); | ||||||
| 
 | 
 | ||||||
|     // As far as the parser is concerned, the position is now == target. In reality the
 |     // As far as the parser is concerned, the position is now == destination. In reality the
 | ||||||
|     // motion control system might still be processing the action and the real tool position
 |     // motion control system might still be processing the action and the real tool position
 | ||||||
|     // in any intermediate location.
 |     // in any intermediate location.
 | ||||||
|     set_current_to_destination(); |     set_current_to_destination(); | ||||||
| @ -8376,7 +8364,7 @@ void prepare_move_to_destination() { | |||||||
|     //*/
 |     //*/
 | ||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
|   void inverse_kinematics(const float cartesian[XYZ]) { |   void inverse_kinematics(const float logical[XYZ]) { | ||||||
|     // Inverse kinematics.
 |     // Inverse kinematics.
 | ||||||
|     // Perform SCARA IK and place results in delta[].
 |     // Perform SCARA IK and place results in delta[].
 | ||||||
|     // The maths and first version were done by QHARLEY.
 |     // The maths and first version were done by QHARLEY.
 | ||||||
| @ -8384,8 +8372,8 @@ void prepare_move_to_destination() { | |||||||
| 
 | 
 | ||||||
|     static float C2, S2, SK1, SK2, THETA, PSI; |     static float C2, S2, SK1, SK2, THETA, PSI; | ||||||
| 
 | 
 | ||||||
|     float sx = RAW_X_POSITION(cartesian[X_AXIS]) - SCARA_OFFSET_X,  //Translate SCARA to standard X Y
 |     float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X,  // Translate SCARA to standard X Y
 | ||||||
|           sy = RAW_Y_POSITION(cartesian[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor.
 |           sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor.
 | ||||||
| 
 | 
 | ||||||
|     #if (L1 == L2) |     #if (L1 == L2) | ||||||
|       C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1; |       C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1; | ||||||
| @ -8403,10 +8391,10 @@ void prepare_move_to_destination() { | |||||||
| 
 | 
 | ||||||
|     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
 |     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
 | ||||||
|     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
 |     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
 | ||||||
|     delta[Z_AXIS] = cartesian[Z_AXIS]; |     delta[C_AXIS] = logical[Z_AXIS]; | ||||||
| 
 | 
 | ||||||
|     /**
 |     /*
 | ||||||
|       DEBUG_POS("SCARA IK", cartesian); |       DEBUG_POS("SCARA IK", logical); | ||||||
|       DEBUG_POS("SCARA IK", delta); |       DEBUG_POS("SCARA IK", delta); | ||||||
|       SERIAL_ECHOPAIR("  SCARA (x,y) ", sx); |       SERIAL_ECHOPAIR("  SCARA (x,y) ", sx); | ||||||
|       SERIAL_ECHOPAIR(",", sy); |       SERIAL_ECHOPAIR(",", sy); | ||||||
|  | |||||||
| @ -541,6 +541,23 @@ void Planner::check_axes_activity() { | |||||||
|       ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); |       ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); | ||||||
|       lz = LOGICAL_Z_POSITION(dz); |       lz = LOGICAL_Z_POSITION(dz); | ||||||
| 
 | 
 | ||||||
|  |     #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||||
|  | 
 | ||||||
|  |       float tmp[XYZ] = { lx, ly, 0 }; | ||||||
|  | 
 | ||||||
|  |       #if ENABLED(DELTA) | ||||||
|  | 
 | ||||||
|  |         float offset = nonlinear_z_offset(tmp); | ||||||
|  |         lx += offset; | ||||||
|  |         ly += offset; | ||||||
|  |         lz += offset; | ||||||
|  | 
 | ||||||
|  |       #else | ||||||
|  | 
 | ||||||
|  |         lz += nonlinear_z_offset(tmp); | ||||||
|  | 
 | ||||||
|  |       #endif | ||||||
|  | 
 | ||||||
|     #endif |     #endif | ||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
| @ -562,6 +579,11 @@ void Planner::check_axes_activity() { | |||||||
|       ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); |       ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); | ||||||
|       lz = LOGICAL_Z_POSITION(dz); |       lz = LOGICAL_Z_POSITION(dz); | ||||||
| 
 | 
 | ||||||
|  |     #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||||
|  | 
 | ||||||
|  |       float tmp[XYZ] = { lx, ly, 0 }; | ||||||
|  |       lz -= nonlinear_z_offset(tmp); | ||||||
|  | 
 | ||||||
|     #endif |     #endif | ||||||
|   } |   } | ||||||
| 
 | 
 | ||||||
| @ -1205,7 +1227,7 @@ void Planner::refresh_positioning() { | |||||||
|   LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; |   LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; | ||||||
|   #if IS_KINEMATIC |   #if IS_KINEMATIC | ||||||
|     inverse_kinematics(current_position); |     inverse_kinematics(current_position); | ||||||
|     set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); |     set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]); | ||||||
|   #else |   #else | ||||||
|     set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); |     set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); | ||||||
|   #endif |   #endif | ||||||
|  | |||||||
| @ -190,10 +190,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] | |||||||
| 
 | 
 | ||||||
|     #if IS_KINEMATIC |     #if IS_KINEMATIC | ||||||
|       inverse_kinematics(bez_target); |       inverse_kinematics(bez_target); | ||||||
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); | ||||||
|         adjust_delta(bez_target); |  | ||||||
|       #endif |  | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); |  | ||||||
|     #else |     #else | ||||||
|       planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); |       planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); | ||||||
|     #endif |     #endif | ||||||
|  | |||||||
| @ -547,7 +547,7 @@ void kill_screen(const char* lcd_msg) { | |||||||
|   inline void line_to_current(AxisEnum axis) { |   inline void line_to_current(AxisEnum axis) { | ||||||
|     #if ENABLED(DELTA) |     #if ENABLED(DELTA) | ||||||
|       inverse_kinematics(current_position); |       inverse_kinematics(current_position); | ||||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); |       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); | ||||||
|     #else // !DELTA
 |     #else // !DELTA
 | ||||||
|       planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); |       planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); | ||||||
|     #endif // !DELTA
 |     #endif // !DELTA
 | ||||||
| @ -1297,7 +1297,7 @@ void kill_screen(const char* lcd_msg) { | |||||||
|     if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { |     if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { | ||||||
|       #if ENABLED(DELTA) |       #if ENABLED(DELTA) | ||||||
|         inverse_kinematics(current_position); |         inverse_kinematics(current_position); | ||||||
|         planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); |         planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); | ||||||
|       #else |       #else | ||||||
|         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); |         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); | ||||||
|       #endif |       #endif | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user