diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h
index e2d5cb0778..65c4f32a3c 100644
--- a/Marlin/Configuration.h
+++ b/Marlin/Configuration.h
@@ -1,245 +1,248 @@
-#ifndef CONFIGURATION_H
-#define CONFIGURATION_H
-
-//#define DEBUG_STEPS
-
-// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
-
-//// The following define selects which electronics board you have. Please choose the one that matches your setup
-// MEGA/RAMPS up to 1.2 = 3,
-// RAMPS 1.3 = 33
-// Gen6 = 5,
-// Sanguinololu 1.2 and above = 62
-// Ultimaker = 7,
-#define MOTHERBOARD 7
-//#define MOTHERBOARD 5
-
-
-//// Thermistor settings:
-// 1 is 100k thermistor
-// 2 is 200k thermistor
-// 3 is mendel-parts thermistor
-// 4 is 10k thermistor
-// 5 is ParCan supplied 104GT-2 100K
-// 6 is EPCOS 100k
-// 7 is 100k Honeywell thermistor 135-104LAG-J01
-#define THERMISTORHEATER_1 3
-#define THERMISTORHEATER_2 3
-#define THERMISTORBED 3
-
-//#define HEATER_0_USES_THERMISTOR
-//#define HEATER_1_USES_THERMISTOR
-#define HEATER_0_USES_AD595
-//#define HEATER_1_USES_AD595
-
-// Select one of these only to define how the bed temp is read.
-//#define BED_USES_THERMISTOR
-//#define BED_USES_AD595
-
-#define HEATER_CHECK_INTERVAL 50
-#define BED_CHECK_INTERVAL 5000
-
-
-//// Endstop Settings
-#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
-// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
-const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
-// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
-
-// This determines the communication speed of the printer
-#define BAUDRATE 250000
-//#define BAUDRATE 115200
-//#define BAUDRATE 230400
-
-// Comment out (using // at the start of the line) to disable SD support:
-
-// #define ULTRA_LCD //any lcd
-
-#define ULTIPANEL
-#define ULTIPANEL
-#ifdef ULTIPANEL
- //#define NEWPANEL //enable this if you have a click-encoder panel
- #define SDSUPPORT
- #define ULTRA_LCD
- #define LCD_WIDTH 20
-#define LCD_HEIGHT 4
-#else //no panel but just lcd
- #ifdef ULTRA_LCD
- #define LCD_WIDTH 16
- #define LCD_HEIGHT 2
- #endif
-#endif
-
-
-//#define SDSUPPORT // Enable SD Card Support in Hardware Console
-
-
-
-const int dropsegments=5; //everything with this number of steps will be ignored as move
-
-//// ADVANCED SETTINGS - to tweak parameters
-
-#include "thermistortables.h"
-
-// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
-#define X_ENABLE_ON 0
-#define Y_ENABLE_ON 0
-#define Z_ENABLE_ON 0
-#define E_ENABLE_ON 0
-
-// Disables axis when it's not being used.
-#define DISABLE_X false
-#define DISABLE_Y false
-#define DISABLE_Z false
-#define DISABLE_E false
-
-// Inverting axis direction
-#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
-#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
-#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
-#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
-
-//// ENDSTOP SETTINGS:
-// Sets direction of endstops when homing; 1=MAX, -1=MIN
-#define X_HOME_DIR -1
-#define Y_HOME_DIR -1
-#define Z_HOME_DIR -1
-
-#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
-#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
-#define X_MAX_LENGTH 210
-#define Y_MAX_LENGTH 210
-#define Z_MAX_LENGTH 210
-
-//// MOVEMENT SETTINGS
-#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
-//note: on bernhards ultimaker 200 200 12 are working well.
-#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
-//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
-//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
-// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
-#define TRAVELING_AT_MAXSPEED
-#define AXIS_RELATIVE_MODES {false, false, false, false}
-
-#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
-
-// default settings
-
-#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
-#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
-#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
-
-#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
-#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
-
-#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
-#define DEFAULT_MINTRAVELFEEDRATE 10
-
-// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
-#define DEFAULT_MINSEGMENTTIME 20000
-#define DEFAULT_XYJERK 30.0*60
-#define DEFAULT_ZJERK 10.0*60
-
-
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
-//this enables the watchdog interrupt.
-#define USE_WATCHDOG
-//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
-#define RESET_MANUAL
-
-#define WATCHDOG_TIMEOUT 4
-
-
-
-//// Experimental watchdog and minimal temp
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
-// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
-//#define WATCHPERIOD 5000 //5 seconds
-
-// Actual temperature must be close to target for this long before M109 returns success
-//#define TEMP_RESIDENCY_TIME 20 // (seconds)
-//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
-
-//// The minimal temperature defines the temperature below which the heater will not be enabled
-#define HEATER_0_MINTEMP 5
-//#define HEATER_1_MINTEMP 5
-//#define BED_MINTEMP 5
-
-
-// When temperature exceeds max temp, your heater will be switched off.
-// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
-// You should use MINTEMP for thermistor short/failure protection.
-#define HEATER_0_MAXTEMP 275
-//#define_HEATER_1_MAXTEMP 275
-//#define BED_MAXTEMP 150
-
-
-
-
-
-
-
-#define PIDTEMP
-#ifdef PIDTEMP
- /// PID settings:
- // Uncomment the following line to enable PID support.
- //#define SMOOTHING
- //#define SMOOTHFACTOR 5.0
- //float current_raw_average=0;
- #define K1 0.95 //smoothing of the PID
- //#define PID_DEBUG // Sends debug data to the serial port.
- //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
- #define PID_MAX 255 // limits current to nozzle
- #define PID_INTEGRAL_DRIVE_MAX 255
- #define PID_dT 0.1
- //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
-
- #define PID_CRITIAL_GAIN 3000
- #define PID_SWING_AT_CRITIAL 45 //seconds
- #define PIDIADD 5
- /*
- //PID according to Ziegler-Nichols method
- float Kp = 0.6*PID_CRITIAL_GAIN;
- float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
- float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
- */
- //PI according to Ziegler-Nichols method
- #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
- #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
- #define DEFAULT_Kd (0)
-
- #define PID_ADD_EXTRUSION_RATE
- #ifdef PID_ADD_EXTRUSION_RATE
- #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
- #endif
-#endif // PIDTEMP
-
-// extruder advance constant (s2/mm3)
-//
-// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
-//
-// hooke's law says: force = k * distance
-// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
-// so: v ^ 2 is proportional to number of steps we advance the extruder
-//#define ADVANCE
-
-#ifdef ADVANCE
-#define EXTRUDER_ADVANCE_K .3
-
-#define D_FILAMENT 1.7
-#define STEPS_MM_E 65
-#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
-#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
-
-#endif // ADVANCE
-
-// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
-#if defined SDSUPPORT
-// The number of linear motions that can be in the plan at any give time.
- #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
-#else
- #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
-#endif
-
-
-#endif
+#ifndef CONFIGURATION_H
+#define CONFIGURATION_H
+
+//#define DEBUG_STEPS
+
+#define MM_PER_ARC_SEGMENT 1
+#define N_ARC_CORRECTION 25
+
+// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
+
+//// The following define selects which electronics board you have. Please choose the one that matches your setup
+// MEGA/RAMPS up to 1.2 = 3,
+// RAMPS 1.3 = 33
+// Gen6 = 5,
+// Sanguinololu 1.2 and above = 62
+// Ultimaker = 7,
+#define MOTHERBOARD 7
+//#define MOTHERBOARD 5
+
+
+//// Thermistor settings:
+// 1 is 100k thermistor
+// 2 is 200k thermistor
+// 3 is mendel-parts thermistor
+// 4 is 10k thermistor
+// 5 is ParCan supplied 104GT-2 100K
+// 6 is EPCOS 100k
+// 7 is 100k Honeywell thermistor 135-104LAG-J01
+#define THERMISTORHEATER_1 3
+#define THERMISTORHEATER_2 3
+#define THERMISTORBED 3
+
+//#define HEATER_0_USES_THERMISTOR
+//#define HEATER_1_USES_THERMISTOR
+#define HEATER_0_USES_AD595
+//#define HEATER_1_USES_AD595
+
+// Select one of these only to define how the bed temp is read.
+//#define BED_USES_THERMISTOR
+//#define BED_USES_AD595
+
+#define HEATER_CHECK_INTERVAL 50
+#define BED_CHECK_INTERVAL 5000
+
+
+//// Endstop Settings
+#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
+// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
+const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
+// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
+
+// This determines the communication speed of the printer
+#define BAUDRATE 250000
+//#define BAUDRATE 115200
+//#define BAUDRATE 230400
+
+// Comment out (using // at the start of the line) to disable SD support:
+
+// #define ULTRA_LCD //any lcd
+
+#define ULTIPANEL
+#define ULTIPANEL
+#ifdef ULTIPANEL
+ //#define NEWPANEL //enable this if you have a click-encoder panel
+ #define SDSUPPORT
+ #define ULTRA_LCD
+ #define LCD_WIDTH 20
+#define LCD_HEIGHT 4
+#else //no panel but just lcd
+ #ifdef ULTRA_LCD
+ #define LCD_WIDTH 16
+ #define LCD_HEIGHT 2
+ #endif
+#endif
+
+
+//#define SDSUPPORT // Enable SD Card Support in Hardware Console
+
+
+
+const int dropsegments=5; //everything with this number of steps will be ignored as move
+
+//// ADVANCED SETTINGS - to tweak parameters
+
+#include "thermistortables.h"
+
+// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
+#define X_ENABLE_ON 0
+#define Y_ENABLE_ON 0
+#define Z_ENABLE_ON 0
+#define E_ENABLE_ON 0
+
+// Disables axis when it's not being used.
+#define DISABLE_X false
+#define DISABLE_Y false
+#define DISABLE_Z false
+#define DISABLE_E false
+
+// Inverting axis direction
+#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
+#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
+
+//// ENDSTOP SETTINGS:
+// Sets direction of endstops when homing; 1=MAX, -1=MIN
+#define X_HOME_DIR -1
+#define Y_HOME_DIR -1
+#define Z_HOME_DIR -1
+
+#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
+#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
+#define X_MAX_LENGTH 210
+#define Y_MAX_LENGTH 210
+#define Z_MAX_LENGTH 210
+
+//// MOVEMENT SETTINGS
+#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
+//note: on bernhards ultimaker 200 200 12 are working well.
+#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
+//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
+//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
+// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
+#define TRAVELING_AT_MAXSPEED
+#define AXIS_RELATIVE_MODES {false, false, false, false}
+
+#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
+
+// default settings
+
+#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
+#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
+#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+
+#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
+#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
+
+#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
+#define DEFAULT_MINTRAVELFEEDRATE 10
+
+// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
+#define DEFAULT_MINSEGMENTTIME 20000
+#define DEFAULT_XYJERK 30.0*60
+#define DEFAULT_ZJERK 10.0*60
+
+
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+//this enables the watchdog interrupt.
+#define USE_WATCHDOG
+//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
+#define RESET_MANUAL
+
+#define WATCHDOG_TIMEOUT 4
+
+
+
+//// Experimental watchdog and minimal temp
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
+//#define WATCHPERIOD 5000 //5 seconds
+
+// Actual temperature must be close to target for this long before M109 returns success
+//#define TEMP_RESIDENCY_TIME 20 // (seconds)
+//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
+
+//// The minimal temperature defines the temperature below which the heater will not be enabled
+#define HEATER_0_MINTEMP 5
+//#define HEATER_1_MINTEMP 5
+//#define BED_MINTEMP 5
+
+
+// When temperature exceeds max temp, your heater will be switched off.
+// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
+// You should use MINTEMP for thermistor short/failure protection.
+#define HEATER_0_MAXTEMP 275
+//#define_HEATER_1_MAXTEMP 275
+//#define BED_MAXTEMP 150
+
+
+
+
+
+
+
+#define PIDTEMP
+#ifdef PIDTEMP
+ /// PID settings:
+ // Uncomment the following line to enable PID support.
+ //#define SMOOTHING
+ //#define SMOOTHFACTOR 5.0
+ //float current_raw_average=0;
+ #define K1 0.95 //smoothing of the PID
+ //#define PID_DEBUG // Sends debug data to the serial port.
+ //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
+ #define PID_MAX 255 // limits current to nozzle
+ #define PID_INTEGRAL_DRIVE_MAX 255
+ #define PID_dT 0.1
+ //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
+
+ #define PID_CRITIAL_GAIN 3000
+ #define PID_SWING_AT_CRITIAL 45 //seconds
+ #define PIDIADD 5
+ /*
+ //PID according to Ziegler-Nichols method
+ float Kp = 0.6*PID_CRITIAL_GAIN;
+ float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
+ float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
+ */
+ //PI according to Ziegler-Nichols method
+ #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
+ #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
+ #define DEFAULT_Kd (0)
+
+ #define PID_ADD_EXTRUSION_RATE
+ #ifdef PID_ADD_EXTRUSION_RATE
+ #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
+ #endif
+#endif // PIDTEMP
+
+// extruder advance constant (s2/mm3)
+//
+// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
+//
+// hooke's law says: force = k * distance
+// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
+// so: v ^ 2 is proportional to number of steps we advance the extruder
+//#define ADVANCE
+
+#ifdef ADVANCE
+#define EXTRUDER_ADVANCE_K .3
+
+#define D_FILAMENT 1.7
+#define STEPS_MM_E 65
+#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
+#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
+
+#endif // ADVANCE
+
+// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
+#if defined SDSUPPORT
+// The number of linear motions that can be in the plan at any give time.
+ #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+#else
+ #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+#endif
+
+
+#endif
diff --git a/Marlin/Marlin.pde b/Marlin/Marlin.pde
index 7615cccf82..92907a2d24 100644
--- a/Marlin/Marlin.pde
+++ b/Marlin/Marlin.pde
@@ -1,1235 +1,1372 @@
-/*
- Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
- */
+/*
+ Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
+#include "EEPROMwrite.h"
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+
+#ifdef SIMPLE_LCD
+ #include "Simplelcd.h"
+#endif
+
+char version_string[] = "1.0.0 Alpha 1";
+
+#ifdef SDSUPPORT
+#include "SdFat.h"
+#endif //SDSUPPORT
+
+
+// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+// G0 -> G1
+// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
+// G4 - Dwell S or P
+// G28 - Home all Axis
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to cordinates given
+
+//RepRap M Codes
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Wait for extruder current temp to reach target temp.
+// M114 - Display current position
+
+//Custom M Codes
+// M20 - List SD card
+// M21 - Init SD card
+// M22 - Release SD card
+// M23 - Select SD file (M23 filename.g)
+// M24 - Start/resume SD print
+// M25 - Pause SD print
+// M26 - Set SD position in bytes (M26 S12345)
+// M27 - Report SD print status
+// M28 - Start SD write (M28 filename.g)
+// M29 - Stop SD write
+// M42 - Change pin status via gcode
+// M80 - Turn on Power Supply
+// M81 - Turn off Power Supply
+// M82 - Set E codes absolute (default)
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84 - Disable steppers until next move,
+// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
+// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
+// M92 - Set axis_steps_per_unit - same syntax as G92
+// M115 - Capabilities string
+// M140 - Set bed target temp
+// M190 - Wait for bed current temp to reach target temp.
+// M200 - Set filament diameter
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+// M220 - set speed factor override percentage S:factor in percent
+// M301 - Set PID parameters P I and D
+// M500 - stores paramters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+
+//Stepper Movement Variables
+
+char axis_codes[NUM_AXIS] = {
+ 'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {
+ 0.0, 0.0, 0.0, 0.0};
+float current_position[NUM_AXIS] = {
+ 0.0, 0.0, 0.0, 0.0};
+float offset[3] = {0.0, 0.0, 0.0};
+bool home_all_axis = true;
+float feedrate = 1500.0, next_feedrate, saved_feedrate;
+long gcode_N, gcode_LastN;
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+
+bool relative_mode = false; //Determines Absolute or Relative Coordinates
+bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
+
+uint8_t fanpwm=0;
+
+volatile int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
+// comm variables
+#define MAX_CMD_SIZE 96
+#define BUFSIZE 4
+char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
+bool fromsd[BUFSIZE];
+int bufindr = 0;
+int bufindw = 0;
+int buflen = 0;
+int i = 0;
+char serial_char;
+int serial_count = 0;
+boolean comment_mode = false;
+char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
+extern float HeaterPower;
+
+#include "EEPROM.h"
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+float tt = 0, bt = 0;
+#ifdef WATCHPERIOD
+int watch_raw = -1000;
+unsigned long watchmillis = 0;
+#endif //WATCHPERIOD
+
+//Inactivity shutdown variables
+unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+unsigned long stepper_inactive_time = 0;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+#ifdef SDSUPPORT
+Sd2Card card;
+SdVolume volume;
+SdFile root;
+SdFile file;
+uint32_t filesize = 0;
+uint32_t sdpos = 0;
+bool sdmode = false;
+bool sdactive = false;
+bool savetosd = false;
+int16_t n;
+unsigned long autostart_atmillis=0;
+
+void initsd(){
+ sdactive = false;
+#if SDSS >- 1
+ if(root.isOpen())
+ root.close();
+ if (!card.init(SPI_FULL_SPEED,SDSS)){
+ //if (!card.init(SPI_HALF_SPEED,SDSS))
+ Serial.println("SD init fail");
+ }
+ else if (!volume.init(&card))
+ Serial.println("volume.init failed");
+ else if (!root.openRoot(&volume))
+ Serial.println("openRoot failed");
+ else
+ {
+ sdactive = true;
+ Serial.println("SD card ok");
+ }
+#endif //SDSS
+}
+
+void quickinitsd(){
+ sdactive=false;
+ autostart_atmillis=millis()+5000;
+}
+
+inline void write_command(char *buf){
+ char* begin = buf;
+ char* npos = 0;
+ char* end = buf + strlen(buf) - 1;
+
+ file.writeError = false;
+ if((npos = strchr(buf, 'N')) != NULL){
+ begin = strchr(npos, ' ') + 1;
+ end = strchr(npos, '*') - 1;
+ }
+ end[1] = '\r';
+ end[2] = '\n';
+ end[3] = '\0';
+ //Serial.println(begin);
+ file.write(begin);
+ if (file.writeError){
+ Serial.println("error writing to file");
+ }
+}
+#endif //SDSUPPORT
+
+
+///adds an command to the main command buffer
+void enquecommand(const char *cmd)
+{
+ if(buflen < BUFSIZE)
+ {
+ //this is dangerous if a mixing of serial and this happsens
+ strcpy(&(cmdbuffer[bufindw][0]),cmd);
+ Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
+ bufindw= (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+ }
+}
+
+void setup()
+{
+
+ Serial.begin(BAUDRATE);
+ ECHOLN("Marlin "< -1
+ SET_OUTPUT(SDPOWER);
+ WRITE(SDPOWER,HIGH);
+#endif //SDPOWER
+ quickinitsd();
+
+#endif //SDSUPPORT
+ plan_init(); // Initialize planner;
+ st_init(); // Initialize stepper;
+ tp_init(); // Initialize temperature loop
+ //checkautostart();
+}
+
+#ifdef SDSUPPORT
+bool autostart_stilltocheck=true;
+
+
+void checkautostart(bool force)
+{
+ //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
+ if(!force)
+ {
+ if(!autostart_stilltocheck)
+ return;
+ if(autostart_atmillis 0)
+ {
+ for(int i=0;i<(int)strlen((char*)p.name);i++)
+ p.name[i]=tolower(p.name[i]);
+ //Serial.print((char*)p.name);
+ //Serial.print(" ");
+ //Serial.println(autoname);
+ if(p.name[9]!='~') //skip safety copies
+ if(strncmp((char*)p.name,autoname,5)==0)
+ {
+ char cmd[30];
+
+ sprintf(cmd,"M23 %s",autoname);
+ //sprintf(cmd,"M115");
+ //enquecommand("G92 Z0");
+ //enquecommand("G1 Z10 F2000");
+ //enquecommand("G28 X-105 Y-105");
+ enquecommand(cmd);
+ enquecommand("M24");
+ found=true;
+
+ }
+ }
+ if(!found)
+ lastnr=-1;
+ else
+ lastnr++;
+
+}
+#else
+
+inline void checkautostart(bool x)
+{
+}
+#endif
+
+
+void loop()
+{
+ if(buflen<3)
+ get_command();
+ checkautostart(false);
+ if(buflen)
+ {
+#ifdef SDSUPPORT
+ if(savetosd){
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+ write_command(cmdbuffer[bufindr]);
+ Serial.println("ok");
+ }
+ else{
+ file.sync();
+ file.close();
+ savetosd = false;
+ Serial.println("Done saving file.");
+ }
+ }
+ else{
+ process_commands();
+ }
+#else
+ process_commands();
+#endif //SDSUPPORT
+ buflen = (buflen-1);
+ bufindr = (bufindr + 1)%BUFSIZE;
+ }
+ //check heater every n milliseconds
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+}
+
+
+inline void get_command()
+{
+ while( Serial.available() > 0 && buflen < BUFSIZE) {
+ serial_char = Serial.read();
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
+ {
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = false;
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
+ Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
+ Serial.println(gcode_LastN);
+ //Serial.println(gcode_N);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)
+ {
+ byte checksum = 0;
+ byte count = 0;
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
+ Serial.print("Error: checksum mismatch, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+ //if no errors, continue parsing
+ }
+ else
+ {
+ Serial.print("Error: No Checksum with line number, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ gcode_LastN = gcode_N;
+ //if no errors, continue parsing
+ }
+ else // if we don't receive 'N' but still see '*'
+ {
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))
+ {
+ Serial.print("Error: No Line Number with checksum, Last Line:");
+ Serial.println(gcode_LastN);
+ serial_count = 0;
+ return;
+ }
+ }
+ if((strstr(cmdbuffer[bufindw], "G") != NULL)){
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+#ifdef SDSUPPORT
+ if(savetosd)
+ break;
+#endif //SDSUPPORT
+ Serial.println("ok");
+ break;
+ default:
+ break;
+ }
+
+ }
+ bufindw = (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+ }
+#ifdef SDSUPPORT
+ if(!sdmode || serial_count!=0){
+ return;
+ }
+ while( filesize > sdpos && buflen < BUFSIZE) {
+ n = file.read();
+ serial_char = (char)n;
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
+ {
+ sdpos = file.curPosition();
+ if(sdpos >= filesize){
+ sdmode = false;
+ Serial.println("Done printing file");
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
+ checkautostart(true);
+ }
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = true;
+ buflen += 1;
+ bufindw = (bufindw + 1)%BUFSIZE;
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+ }
+#endif //SDSUPPORT
+
+}
+
+
+inline float code_value() {
+ return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
+}
+inline long code_value_long() {
+ return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
+}
+inline bool code_seen(char code_string[]) {
+ return (strstr(cmdbuffer[bufindr], code_string) != NULL);
+} //Return True if the string was found
+
+inline bool code_seen(char code)
+{
+ strchr_pointer = strchr(cmdbuffer[bufindr], code);
+ return (strchr_pointer != NULL); //Return True if a character was found
+}
+
+inline void process_commands()
+{
+ unsigned long codenum; //throw away variable
+ char *starpos = NULL;
+
+ if(code_seen('G'))
+ {
+ switch((int)code_value())
+ {
+ case 0: // G0 -> G1
+ case 1: // G1
+ get_coordinates(); // For X Y Z E F
+ prepare_move();
+ previous_millis_cmd = millis();
+ //ClearToSend();
+ return;
+ //break;
+ case 2: // G2 - CW ARC
+ get_arc_coordinates();
+ prepare_arc_move(true);
+ previous_millis_cmd = millis();
+ return;
+ case 3: // G3 - CCW ARC
+ get_arc_coordinates();
+ prepare_arc_move(false);
+ previous_millis_cmd = millis();
+ return;
+ case 4: // G4 dwell
+ codenum = 0;
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+ codenum += millis(); // keep track of when we started waiting
+ while(millis() < codenum ){
+ manage_heater();
+ }
+ break;
+ case 28: //G28 Home all Axis one at a time
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+
+ for(int i=0; i < NUM_AXIS; i++) {
+ destination[i] = current_position[i];
+ }
+ feedrate = 0.0;
+
+ home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
+
+ if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
+ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
+// st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS];
+ prepare_move();
+
+// st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = -5 * X_HOME_DIR;
+ prepare_move();
+
+// st_synchronize();
+ destination[X_AXIS] = 10 * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS]/2 ;
+ prepare_move();
+
+// st_synchronize();
+ current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
+ feedrate = 0.0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
+ if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS];
+ prepare_move();
+// st_synchronize();
+
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = -5 * Y_HOME_DIR;
+ prepare_move();
+// st_synchronize();
+
+ destination[Y_AXIS] = 10 * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS]/2;
+ prepare_move();
+// st_synchronize();
+
+ current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = current_position[Y_AXIS];
+ feedrate = 0.0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+ if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS];
+ prepare_move();
+// st_synchronize();
+
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = -2 * Z_HOME_DIR;
+ prepare_move();
+// st_synchronize();
+
+ destination[Z_AXIS] = 3 * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS]/2;
+ prepare_move();
+// st_synchronize();
+
+ current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = current_position[Z_AXIS];
+ feedrate = 0.0;
+ }
+ }
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+ break;
+ case 90: // G90
+ relative_mode = false;
+ break;
+ case 91: // G91
+ relative_mode = true;
+ break;
+ case 92: // G92
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) current_position[i] = code_value();
+ }
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ break;
+ }
+ }
+
+ else if(code_seen('M'))
+ {
+
+ switch( (int)code_value() )
+ {
+#ifdef SDSUPPORT
+
+ case 20: // M20 - list SD card
+ Serial.println("Begin file list");
+ root.ls();
+ Serial.println("End file list");
+ break;
+ case 21: // M21 - init SD card
+ sdmode = false;
+ initsd();
+ break;
+ case 22: //M22 - release SD card
+ sdmode = false;
+ sdactive = false;
+ break;
+ case 23: //M23 - Select file
+ if(sdactive){
+ sdmode = false;
+ file.close();
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos!=NULL)
+ *(starpos-1)='\0';
+ if (file.open(&root, strchr_pointer + 4, O_READ)) {
+ Serial.print("File opened:");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(" Size:");
+ Serial.println(file.fileSize());
+ sdpos = 0;
+ filesize = file.fileSize();
+ Serial.println("File selected");
+ }
+ else{
+ Serial.println("file.open failed");
+ }
+ }
+ break;
+ case 24: //M24 - Start SD print
+ if(sdactive){
+ sdmode = true;
+ starttime=millis();
+ }
+ break;
+ case 25: //M25 - Pause SD print
+ if(sdmode){
+ sdmode = false;
+ }
+ break;
+ case 26: //M26 - Set SD index
+ if(sdactive && code_seen('S')){
+ sdpos = code_value_long();
+ file.seekSet(sdpos);
+ }
+ break;
+ case 27: //M27 - Get SD status
+ if(sdactive){
+ Serial.print("SD printing byte ");
+ Serial.print(sdpos);
+ Serial.print("/");
+ Serial.println(filesize);
+ }
+ else{
+ Serial.println("Not SD printing");
+ }
+ break;
+ case 28: //M28 - Start SD write
+ if(sdactive){
+ char* npos = 0;
+ file.close();
+ sdmode = false;
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ npos = strchr(cmdbuffer[bufindr], 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos-1) = '\0';
+ }
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+ {
+ Serial.print("open failed, File: ");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(".");
+ }
+ else{
+ savetosd = true;
+ Serial.print("Writing to file: ");
+ Serial.println(strchr_pointer + 4);
+ }
+ }
+ break;
+ case 29: //M29 - Stop SD write
+ //processed in write to file routine above
+ //savetosd = false;
+ break;
+ case 30:
+ {
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
+ }
+ break;
+#endif //SDSUPPORT
+ case 42: //M42 -Change pin status via gcode
+ if (code_seen('S'))
+ {
+ int pin_status = code_value();
+ if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+ {
+ int pin_number = code_value();
+ for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+
+ if (pin_number > -1)
+ {
+ pinMode(pin_number, OUTPUT);
+ digitalWrite(pin_number, pin_status);
+ analogWrite(pin_number, pin_status);
+ }
+ }
+ }
+ break;
+ case 104: // M104
+ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
+#ifdef PIDTEMP
+ pid_setpoint = code_value();
+#endif //PIDTEM
+ #ifdef WATCHPERIOD
+ if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
+ watchmillis = max(1,millis());
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
+ }else{
+ watchmillis = 0;
+ }
+ #endif
+ break;
+ case 140: // M140 set bed temp
+ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
+ break;
+ case 105: // M105
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+ tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+ #endif
+ #if TEMP_1_PIN > -1
+ bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
+ #endif
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+ Serial.print("ok T:");
+ Serial.print(tt);
+// Serial.print(", raw:");
+// Serial.print(current_raw);
+ #if TEMP_1_PIN > -1
+#ifdef PIDTEMP
+ Serial.print(" B:");
+ #if TEMP_1_PIN > -1
+ Serial.println(bt);
+ #else
+ Serial.println(HeaterPower);
+ #endif
+#else
+ Serial.println();
+#endif
+ #else
+ Serial.println();
+ #endif
+ #else
+ Serial.println("No thermistors - no temp");
+ #endif
+ return;
+ //break;
+ case 109: {// M109 - Wait for extruder heater to reach target.
+ LCD_MESSAGE("Heating...");
+ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
+ #ifdef PIDTEMP
+ pid_setpoint = code_value();
+ #endif //PIDTEM
+ #ifdef WATCHPERIOD
+ if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
+ watchmillis = max(1,millis());
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
+ } else {
+ watchmillis = 0;
+ }
+ #endif //WATCHPERIOD
+ codenum = millis();
+
+ /* See if we are heating up or cooling down */
+ bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
+
+ #ifdef TEMP_RESIDENCY_TIME
+ long residencyStart;
+ residencyStart = -1;
+ /* continue to loop until we have reached the target temp
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+ while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
+ (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
+ #else
+ while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
+ #endif //TEMP_RESIDENCY_TIME
+ if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
+ Serial.print("T:");
+ Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
+ codenum = millis();
+ }
+ manage_heater();
+ LCD_STATUS;
+ #ifdef TEMP_RESIDENCY_TIME
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+ or when current temp falls outside the hysteresis after target temp was reached */
+ if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
+ (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
+ (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
+ residencyStart = millis();
+ }
+ #endif //TEMP_RESIDENCY_TIME
+ }
+ LCD_MESSAGE("Marlin ready.");
+ }
+ break;
+ case 190: // M190 - Wait bed for heater to reach target.
+ #if TEMP_1_PIN > -1
+ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
+ codenum = millis();
+ while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
+ {
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+ Serial.print("T:");
+ Serial.println( tt );
+ Serial.print("ok T:");
+ Serial.print( tt );
+ Serial.print(" B:");
+ Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
+ codenum = millis();
+ }
+ manage_heater();
+ }
+ #endif
+ break;
+#if FAN_PIN > -1
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=constrain(code_value(),0,255);
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ else {
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=255;
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ break;
+ case 107: //M107 Fan Off
+ WRITE(FAN_PIN,LOW);
+ analogWrite(FAN_PIN, 0);
+ break;
+#endif
+#if (PS_ON_PIN > -1)
+ case 80: // M80 - ATX Power On
+ SET_OUTPUT(PS_ON_PIN); //GND
+ break;
+ case 81: // M81 - ATX Power Off
+ SET_INPUT(PS_ON_PIN); //Floating
+ break;
+#endif
+ case 82:
+ axis_relative_modes[3] = false;
+ break;
+ case 83:
+ axis_relative_modes[3] = true;
+ break;
+ case 18:
+ case 84:
+ if(code_seen('S')){
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else{
+ st_synchronize();
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
+ break;
+ case 85: // M85
+ code_seen('S');
+ max_inactive_time = code_value() * 1000;
+ break;
+ case 92: // M92
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
+ }
+
+ break;
+ case 115: // M115
+ Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
+ break;
+ case 114: // M114
+ Serial.print("X:");
+ Serial.print(current_position[X_AXIS]);
+ Serial.print("Y:");
+ Serial.print(current_position[Y_AXIS]);
+ Serial.print("Z:");
+ Serial.print(current_position[Z_AXIS]);
+ Serial.print("E:");
+ Serial.print(current_position[E_AXIS]);
+ #ifdef DEBUG_STEPS
+ Serial.print(" Count X:");
+ Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
+ Serial.print("Y:");
+ Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
+ Serial.print("Z:");
+ Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
+ #endif
+ Serial.println("");
+ break;
+ case 119: // M119
+#if (X_MIN_PIN > -1)
+ Serial.print("x_min:");
+ Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (X_MAX_PIN > -1)
+ Serial.print("x_max:");
+ Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MIN_PIN > -1)
+ Serial.print("y_min:");
+ Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MAX_PIN > -1)
+ Serial.print("y_max:");
+ Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MIN_PIN > -1)
+ Serial.print("z_min:");
+ Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MAX_PIN > -1)
+ Serial.print("z_max:");
+ Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+ Serial.println("");
+ break;
+ //TODO: update for all axis, use for loop
+ case 201: // M201
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+#if 0 // Not used for Sprinter/grbl gen6
+ case 202: // M202
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+#endif
+ case 203: // M203 max feedrate mm/sec
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
+ }
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ {
+ if(code_seen('S')) acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ }
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ {
+ if(code_seen('S')) minimumfeedrate = code_value()*60 ;
+ if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
+ if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_xy_jerk = code_value()*60 ;
+ if(code_seen('Z')) max_z_jerk = code_value()*60 ;
+ }
+ break;
+ case 220: // M220 S- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ feedmultiplychanged=true;
+ }
+ }
+ break;
+#ifdef PIDTEMP
+ case 301: // M301
+ if(code_seen('P')) Kp = code_value();
+ if(code_seen('I')) Ki = code_value()*PID_dT;
+ if(code_seen('D')) Kd = code_value()/PID_dT;
+// ECHOLN("Kp "<<_FLOAT(Kp,2));
+// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
+// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
+
+// temp_iState_min = 0.0;
+// if (Ki!=0) {
+// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
+// }
+// else temp_iState_max = 1.0e10;
+ break;
+#endif //PIDTEMP
+ case 500: // Store settings in EEPROM
+ {
+ StoreSettings();
+ }
+ break;
+ case 501: // Read settings from EEPROM
+ {
+ RetrieveSettings();
+ }
+ break;
+ case 502: // Revert to default settings
+ {
+ RetrieveSettings(true);
+ }
+ break;
+
+ }
+ }
+ else{
+ Serial.println("Unknown command:");
+ Serial.println(cmdbuffer[bufindr]);
+ }
+
+ ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+ //char cmdbuffer[bufindr][100]="Resend:";
+ Serial.flush();
+ Serial.print("Resend:");
+ Serial.println(gcode_LastN + 1);
+ ClearToSend();
+}
+
+void ClearToSend()
+{
+ previous_millis_cmd = millis();
+#ifdef SDSUPPORT
+ if(fromsd[bufindr])
+ return;
+#endif //SDSUPPORT
+ Serial.println("ok");
+}
+
+inline void get_coordinates()
+{
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
+ if(code_seen('F')) {
+ next_feedrate = code_value();
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
+ }
+}
+
+inline void get_arc_coordinates()
+{
+ get_coordinates();
+ if(code_seen("I")) offset[0] = code_value();
+ if(code_seen("J")) offset[1] = code_value();
+}
+
+void prepare_move()
+{
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
+ for(int i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+}
+
+void prepare_arc_move(char isclockwise) {
+#if 0
+ if (radius_mode) {
+ /*
+ We need to calculate the center of the circle that has the designated radius and passes
+ through both the current position and the target position. This method calculates the following
+ set of equations where [x,y] is the vector from current to target position, d == magnitude of
+ that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
+ the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
+ length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
+ [i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
+
+ d^2 == x^2 + y^2
+ h^2 == r^2 - (d/2)^2
+ i == x/2 - y/d*h
+ j == y/2 + x/d*h
+
+ O <- [i,j]
+ - |
+ r - |
+ - |
+ - | h
+ - |
+ [0,0] -> C -----------------+--------------- T <- [x,y]
+ | <------ d/2 ---->|
+
+ C - Current position
+ T - Target position
+ O - center of circle that pass through both C and T
+ d - distance from C to T
+ r - designated radius
+ h - distance from center of CT to O
+
+ Expanding the equations:
+
+ d -> sqrt(x^2 + y^2)
+ h -> sqrt(4 * r^2 - x^2 - y^2)/2
+ i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
+ j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
+
+ Which can be written:
+
+ i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
+ j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
+
+ Which we for size and speed reasons optimize to:
+
+ h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
+ i = (x - (y * h_x2_div_d))/2
+ j = (y + (x * h_x2_div_d))/2
+
+ */
+
+ // Calculate the change in position along each selected axis
+ double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
+ double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
+
+ clear_vector(offset);
+ double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
+ // If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
+ // real CNC, and thus - for practical reasons - we will terminate promptly:
+ if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
+ // Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
+ if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
+
+ /* The counter clockwise circle lies to the left of the target direction. When offset is positive,
+ the left hand circle will be generated - when it is negative the right hand circle is generated.
+
+
+ T <-- Target position
+
+ ^
+ Clockwise circles with this center | Clockwise circles with this center will have
+ will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
+ \ | /
+ center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
+ |
+ |
+
+ C <-- Current position */
+
+
+ // Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
+ // even though it is advised against ever generating such circles in a single line of g-code. By
+ // inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
+ // travel and thus we get the unadvisably long arcs as prescribed.
+ if (r < 0) {
+ h_x2_div_d = -h_x2_div_d;
+ r = -r; // Finished with r. Set to positive for mc_arc
+ }
+ // Complete the operation by calculating the actual center of the arc
+ offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
+ offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
+
+ } else { // Offset mode specific computations
+#endif
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+// }
+
+ // Set clockwise/counter-clockwise sign for mc_arc computations
+// uint8_t isclockwise = false;
+// if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
+
+ // Trace the arc
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
+
+// }
+
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ for(int ii=0; ii < NUM_AXIS; ii++) {
+ current_position[ii] = destination[ii];
+ }
+}
+
+#ifdef USE_WATCHDOG
+
+#include
+#include
+
+volatile uint8_t timeout_seconds=0;
+
+void(* ctrlaltdelete) (void) = 0;
+
+ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
+ if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
+ {
+ kill();
+#ifdef RESET_MANUAL
+ LCD_MESSAGE("Please Reset!");
+ ECHOLN("echo_: Something is wrong, please turn off the printer.");
+#else
+ LCD_MESSAGE("Timeout, resetting!");
+#endif
+ //disable watchdog, it will survife reboot.
+ WDTCSR |= (1< -1
+ target_raw[0]=0;
+ #if HEATER_0_PIN > -1
+ WRITE(HEATER_0_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_1_PIN > -1
+ target_raw[1]=0;
+ #if HEATER_1_PIN > -1
+ WRITE(HEATER_1_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_2_PIN > -1
+ target_raw[2]=0;
+ #if HEATER_2_PIN > -1
+ WRITE(HEATER_2_PIN,LOW);
+ #endif
+ #endif
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+ Serial.println("!! Printer halted. kill() called !!");
+ while(1); // Wait for reset
+}
+
+void manage_inactivity(byte debug) {
+ if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
+ if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
+ check_axes_activity();
+}
-/*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "EEPROMwrite.h"
-#include "fastio.h"
-#include "Configuration.h"
-#include "pins.h"
-#include "Marlin.h"
-#include "ultralcd.h"
-#include "streaming.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-
-#ifdef SIMPLE_LCD
- #include "Simplelcd.h"
-#endif
-
-char version_string[] = "1.0.0 Alpha 1";
-
-#ifdef SDSUPPORT
-#include "SdFat.h"
-#endif //SDSUPPORT
-
-
-// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-// G0 -> G1
-// G1 - Coordinated Movement X Y Z E
-// G2 - CW ARC
-// G3 - CCW ARC
-// G4 - Dwell S or P
-// G28 - Home all Axis
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to cordinates given
-
-//RepRap M Codes
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Wait for extruder current temp to reach target temp.
-// M114 - Display current position
-
-//Custom M Codes
-// M20 - List SD card
-// M21 - Init SD card
-// M22 - Release SD card
-// M23 - Select SD file (M23 filename.g)
-// M24 - Start/resume SD print
-// M25 - Pause SD print
-// M26 - Set SD position in bytes (M26 S12345)
-// M27 - Report SD print status
-// M28 - Start SD write (M28 filename.g)
-// M29 - Stop SD write
-// M42 - Change pin status via gcode
-// M80 - Turn on Power Supply
-// M81 - Turn off Power Supply
-// M82 - Set E codes absolute (default)
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84 - Disable steppers until next move,
-// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
-// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
-// M92 - Set axis_steps_per_unit - same syntax as G92
-// M115 - Capabilities string
-// M140 - Set bed target temp
-// M190 - Wait for bed current temp to reach target temp.
-// M200 - Set filament diameter
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
-// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-// M220 - set speed factor override percentage S:factor in percent
-// M301 - Set PID parameters P I and D
-// M500 - stores paramters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
-// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
-
-//Stepper Movement Variables
-
-char axis_codes[NUM_AXIS] = {
- 'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
-float current_position[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
-bool home_all_axis = true;
-float feedrate = 1500.0, next_feedrate, saved_feedrate;
-long gcode_N, gcode_LastN;
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-
-bool relative_mode = false; //Determines Absolute or Relative Coordinates
-bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-
-uint8_t fanpwm=0;
-
-volatile int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-volatile bool feedmultiplychanged=false;
-// comm variables
-#define MAX_CMD_SIZE 96
-#define BUFSIZE 4
-char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
-bool fromsd[BUFSIZE];
-int bufindr = 0;
-int bufindw = 0;
-int buflen = 0;
-int i = 0;
-char serial_char;
-int serial_count = 0;
-boolean comment_mode = false;
-char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-extern float HeaterPower;
-
-#include "EEPROM.h"
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-float tt = 0, bt = 0;
-#ifdef WATCHPERIOD
-int watch_raw = -1000;
-unsigned long watchmillis = 0;
-#endif //WATCHPERIOD
-
-//Inactivity shutdown variables
-unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-unsigned long stepper_inactive_time = 0;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-#ifdef SDSUPPORT
-Sd2Card card;
-SdVolume volume;
-SdFile root;
-SdFile file;
-uint32_t filesize = 0;
-uint32_t sdpos = 0;
-bool sdmode = false;
-bool sdactive = false;
-bool savetosd = false;
-int16_t n;
-unsigned long autostart_atmillis=0;
-
-void initsd(){
- sdactive = false;
-#if SDSS >- 1
- if(root.isOpen())
- root.close();
- if (!card.init(SPI_FULL_SPEED,SDSS)){
- //if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
- }
- else if (!volume.init(&card))
- Serial.println("volume.init failed");
- else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
- else
- {
- sdactive = true;
- Serial.println("SD card ok");
- }
-#endif //SDSS
-}
-
-void quickinitsd(){
- sdactive=false;
- autostart_atmillis=millis()+5000;
-}
-
-inline void write_command(char *buf){
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
- //Serial.println(begin);
- file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
- }
-}
-#endif //SDSUPPORT
-
-
-///adds an command to the main command buffer
-void enquecommand(const char *cmd)
-{
- if(buflen < BUFSIZE)
- {
- //this is dangerous if a mixing of serial and this happsens
- strcpy(&(cmdbuffer[bufindw][0]),cmd);
- Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
- bufindw= (bufindw + 1)%BUFSIZE;
- buflen += 1;
- }
-}
-
-void setup()
-{
-
- Serial.begin(BAUDRATE);
- ECHOLN("Marlin "< -1
- SET_OUTPUT(SDPOWER);
- WRITE(SDPOWER,HIGH);
-#endif //SDPOWER
- quickinitsd();
-
-#endif //SDSUPPORT
- plan_init(); // Initialize planner;
- st_init(); // Initialize stepper;
- tp_init(); // Initialize temperature loop
- //checkautostart();
-}
-
-#ifdef SDSUPPORT
-bool autostart_stilltocheck=true;
-
-
-void checkautostart(bool force)
-{
- //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
- if(!force)
- {
- if(!autostart_stilltocheck)
- return;
- if(autostart_atmillis 0)
- {
- for(int i=0;i<(int)strlen((char*)p.name);i++)
- p.name[i]=tolower(p.name[i]);
- //Serial.print((char*)p.name);
- //Serial.print(" ");
- //Serial.println(autoname);
- if(p.name[9]!='~') //skip safety copies
- if(strncmp((char*)p.name,autoname,5)==0)
- {
- char cmd[30];
-
- sprintf(cmd,"M23 %s",autoname);
- //sprintf(cmd,"M115");
- //enquecommand("G92 Z0");
- //enquecommand("G1 Z10 F2000");
- //enquecommand("G28 X-105 Y-105");
- enquecommand(cmd);
- enquecommand("M24");
- found=true;
-
- }
- }
- if(!found)
- lastnr=-1;
- else
- lastnr++;
-
-}
-#else
-
-inline void checkautostart(bool x)
-{
-}
-#endif
-
-
-void loop()
-{
- if(buflen<3)
- get_command();
- checkautostart(false);
- if(buflen)
- {
-#ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
- write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }
- else{
- file.sync();
- file.close();
- savetosd = false;
- Serial.println("Done saving file.");
- }
- }
- else{
- process_commands();
- }
-#else
- process_commands();
-#endif //SDSUPPORT
- buflen = (buflen-1);
- bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
- LCD_STATUS;
-}
-
-
-inline void get_command()
-{
- while( Serial.available() > 0 && buflen < BUFSIZE) {
- serial_char = Serial.read();
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
- {
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
-#ifdef SDSUPPORT
- if(savetosd)
- break;
-#endif //SDSUPPORT
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
- bufindw = (bufindw + 1)%BUFSIZE;
- buflen += 1;
-
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
-#ifdef SDSUPPORT
- if(!sdmode || serial_count!=0){
- return;
- }
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
- {
- sdpos = file.curPosition();
- if(sdpos >= filesize){
- sdmode = false;
- Serial.println("Done printing file");
- stoptime=millis();
- char time[30];
- unsigned long t=(stoptime-starttime)/1000;
- int sec,min;
- min=t/60;
- sec=t%60;
- sprintf(time,"%i min, %i sec",min,sec);
- Serial.println(time);
- LCD_MESSAGE(time);
- checkautostart(true);
- }
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
-#endif //SDSUPPORT
-
-}
-
-
-inline float code_value() {
- return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
-}
-inline long code_value_long() {
- return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
-}
-inline bool code_seen(char code_string[]) {
- return (strstr(cmdbuffer[bufindr], code_string) != NULL);
-} //Return True if the string was found
-
-inline bool code_seen(char code)
-{
- strchr_pointer = strchr(cmdbuffer[bufindr], code);
- return (strchr_pointer != NULL); //Return True if a character was found
-}
-
-inline void process_commands()
-{
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
-
- if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- get_coordinates(); // For X Y Z E F
- prepare_move();
- previous_millis_cmd = millis();
- //ClearToSend();
- return;
- //break;
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum ){
- manage_heater();
- }
- break;
- case 28: //G28 Home all Axis one at a time
- saved_feedrate = feedrate;
- saved_feedmultiply = feedmultiply;
- feedmultiply = 100;
-
- for(int i=0; i < NUM_AXIS; i++) {
- destination[i] = current_position[i];
- }
- feedrate = 0.0;
-
- home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
-
- if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
-// st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS];
- prepare_move();
-
-// st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = -5 * X_HOME_DIR;
- prepare_move();
-
-// st_synchronize();
- destination[X_AXIS] = 10 * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS]/2 ;
- prepare_move();
-
-// st_synchronize();
- current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = current_position[X_AXIS];
- feedrate = 0.0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS];
- prepare_move();
-// st_synchronize();
-
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = -5 * Y_HOME_DIR;
- prepare_move();
-// st_synchronize();
-
- destination[Y_AXIS] = 10 * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS]/2;
- prepare_move();
-// st_synchronize();
-
- current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = current_position[Y_AXIS];
- feedrate = 0.0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS];
- prepare_move();
-// st_synchronize();
-
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = -2 * Z_HOME_DIR;
- prepare_move();
-// st_synchronize();
-
- destination[Z_AXIS] = 3 * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS]/2;
- prepare_move();
-// st_synchronize();
-
- current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = current_position[Z_AXIS];
- feedrate = 0.0;
- }
- }
- feedrate = saved_feedrate;
- feedmultiply = saved_feedmultiply;
- previous_millis_cmd = millis();
- break;
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(!code_seen(axis_codes[E_AXIS]))
- st_synchronize();
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) current_position[i] = code_value();
- }
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- break;
- }
- }
-
- else if(code_seen('M'))
- {
-
- switch( (int)code_value() )
- {
-#ifdef SDSUPPORT
-
- case 20: // M20 - list SD card
- Serial.println("Begin file list");
- root.ls();
- Serial.println("End file list");
- break;
- case 21: // M21 - init SD card
- sdmode = false;
- initsd();
- break;
- case 22: //M22 - release SD card
- sdmode = false;
- sdactive = false;
- break;
- case 23: //M23 - Select file
- if(sdactive){
- sdmode = false;
- file.close();
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos!=NULL)
- *(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
- Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
- Serial.println(file.fileSize());
- sdpos = 0;
- filesize = file.fileSize();
- Serial.println("File selected");
- }
- else{
- Serial.println("file.open failed");
- }
- }
- break;
- case 24: //M24 - Start SD print
- if(sdactive){
- sdmode = true;
- starttime=millis();
- }
- break;
- case 25: //M25 - Pause SD print
- if(sdmode){
- sdmode = false;
- }
- break;
- case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
- sdpos = code_value_long();
- file.seekSet(sdpos);
- }
- break;
- case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
- Serial.print(sdpos);
- Serial.print("/");
- Serial.println(filesize);
- }
- else{
- Serial.println("Not SD printing");
- }
- break;
- case 28: //M28 - Start SD write
- if(sdactive){
- char* npos = 0;
- file.close();
- sdmode = false;
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- npos = strchr(cmdbuffer[bufindr], 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos-1) = '\0';
- }
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }
- else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
- }
- }
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //savetosd = false;
- break;
- case 30:
- {
- stoptime=millis();
- char time[30];
- unsigned long t=(stoptime-starttime)/1000;
- int sec,min;
- min=t/60;
- sec=t%60;
- sprintf(time,"%i min, %i sec",min,sec);
- Serial.println(time);
- LCD_MESSAGE(time);
- }
- break;
-#endif //SDSUPPORT
- case 42: //M42 -Change pin status via gcode
- if (code_seen('S'))
- {
- int pin_status = code_value();
- if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
- {
- int pin_number = code_value();
- for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
- {
- if (sensitive_pins[i] == pin_number)
- {
- pin_number = -1;
- break;
- }
- }
-
- if (pin_number > -1)
- {
- pinMode(pin_number, OUTPUT);
- digitalWrite(pin_number, pin_status);
- analogWrite(pin_number, pin_status);
- }
- }
- }
- break;
- case 104: // M104
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
-#ifdef PIDTEMP
- pid_setpoint = code_value();
-#endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
- }else{
- watchmillis = 0;
- }
- #endif
- break;
- case 140: // M140 set bed temp
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
- break;
- case 105: // M105
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
- #endif
- #if TEMP_1_PIN > -1
- bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- Serial.print("ok T:");
- Serial.print(tt);
-// Serial.print(", raw:");
-// Serial.print(current_raw);
- #if TEMP_1_PIN > -1
-#ifdef PIDTEMP
- Serial.print(" B:");
- #if TEMP_1_PIN > -1
- Serial.println(bt);
- #else
- Serial.println(HeaterPower);
- #endif
-#else
- Serial.println();
-#endif
- #else
- Serial.println();
- #endif
- #else
- Serial.println("No thermistors - no temp");
- #endif
- return;
- //break;
- case 109: {// M109 - Wait for extruder heater to reach target.
- LCD_MESSAGE("Heating...");
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
- #ifdef PIDTEMP
- pid_setpoint = code_value();
- #endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
- } else {
- watchmillis = 0;
- }
- #endif //WATCHPERIOD
- codenum = millis();
-
- /* See if we are heating up or cooling down */
- bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
-
- #ifdef TEMP_RESIDENCY_TIME
- long residencyStart;
- residencyStart = -1;
- /* continue to loop until we have reached the target temp
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
- while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
- (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
- #else
- while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
- #endif //TEMP_RESIDENCY_TIME
- if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
- Serial.print("T:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
- codenum = millis();
- }
- manage_heater();
- LCD_STATUS;
- #ifdef TEMP_RESIDENCY_TIME
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
- or when current temp falls outside the hysteresis after target temp was reached */
- if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
- (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
- (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
- residencyStart = millis();
- }
- #endif //TEMP_RESIDENCY_TIME
- }
- LCD_MESSAGE("Marlin ready.");
- }
- break;
- case 190: // M190 - Wait bed for heater to reach target.
- #if TEMP_1_PIN > -1
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
- codenum = millis();
- while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
- {
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
- Serial.print("T:");
- Serial.println( tt );
- Serial.print("ok T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
- codenum = millis();
- }
- manage_heater();
- }
- #endif
- break;
-#if FAN_PIN > -1
- case 106: //M106 Fan On
- if (code_seen('S')){
- WRITE(FAN_PIN,HIGH);
- fanpwm=constrain(code_value(),0,255);
- analogWrite(FAN_PIN, fanpwm);
- }
- else {
- WRITE(FAN_PIN,HIGH);
- fanpwm=255;
- analogWrite(FAN_PIN, fanpwm);
- }
- break;
- case 107: //M107 Fan Off
- WRITE(FAN_PIN,LOW);
- analogWrite(FAN_PIN, 0);
- break;
-#endif
-#if (PS_ON_PIN > -1)
- case 80: // M80 - ATX Power On
- SET_OUTPUT(PS_ON_PIN); //GND
- break;
- case 81: // M81 - ATX Power Off
- SET_INPUT(PS_ON_PIN); //Floating
- break;
-#endif
- case 82:
- axis_relative_modes[3] = false;
- break;
- case 83:
- axis_relative_modes[3] = true;
- break;
- case 18:
- case 84:
- if(code_seen('S')){
- stepper_inactive_time = code_value() * 1000;
- }
- else{
- st_synchronize();
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- break;
- case 85: // M85
- code_seen('S');
- max_inactive_time = code_value() * 1000;
- break;
- case 92: // M92
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
- }
-
- break;
- case 115: // M115
- Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
- break;
- case 114: // M114
- Serial.print("X:");
- Serial.print(current_position[X_AXIS]);
- Serial.print("Y:");
- Serial.print(current_position[Y_AXIS]);
- Serial.print("Z:");
- Serial.print(current_position[Z_AXIS]);
- Serial.print("E:");
- Serial.print(current_position[E_AXIS]);
- #ifdef DEBUG_STEPS
- Serial.print(" Count X:");
- Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
- Serial.print("Y:");
- Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
- Serial.print("Z:");
- Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
- #endif
- Serial.println("");
- break;
- case 119: // M119
-#if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
- Serial.println("");
- break;
- //TODO: update for all axis, use for loop
- case 201: // M201
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
-#if 0 // Not used for Sprinter/grbl gen6
- case 202: // M202
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
-#endif
- case 203: // M203 max feedrate mm/sec
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
- }
- break;
- case 204: // M204 acclereration S normal moves T filmanent only moves
- {
- if(code_seen('S')) acceleration = code_value() ;
- if(code_seen('T')) retract_acceleration = code_value() ;
- }
- break;
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
- {
- if(code_seen('S')) minimumfeedrate = code_value()*60 ;
- if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
- if(code_seen('B')) minsegmenttime = code_value() ;
- if(code_seen('X')) max_xy_jerk = code_value()*60 ;
- if(code_seen('Z')) max_z_jerk = code_value()*60 ;
- }
- break;
- case 220: // M220 S- set speed factor override percentage
- {
- if(code_seen('S'))
- {
- feedmultiply = code_value() ;
- feedmultiplychanged=true;
- }
- }
- break;
-#ifdef PIDTEMP
- case 301: // M301
- if(code_seen('P')) Kp = code_value();
- if(code_seen('I')) Ki = code_value()*PID_dT;
- if(code_seen('D')) Kd = code_value()/PID_dT;
-// ECHOLN("Kp "<<_FLOAT(Kp,2));
-// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
-// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
-
-// temp_iState_min = 0.0;
-// if (Ki!=0) {
-// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
-// }
-// else temp_iState_max = 1.0e10;
- break;
-#endif //PIDTEMP
- case 500: // Store settings in EEPROM
- {
- StoreSettings();
- }
- break;
- case 501: // Read settings from EEPROM
- {
- RetrieveSettings();
- }
- break;
- case 502: // Revert to default settings
- {
- RetrieveSettings(true);
- }
- break;
-
- }
- }
- else{
- Serial.println("Unknown command:");
- Serial.println(cmdbuffer[bufindr]);
- }
-
- ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
- //char cmdbuffer[bufindr][100]="Resend:";
- Serial.flush();
- Serial.print("Resend:");
- Serial.println(gcode_LastN + 1);
- ClearToSend();
-}
-
-void ClearToSend()
-{
- previous_millis_cmd = millis();
-#ifdef SDSUPPORT
- if(fromsd[bufindr])
- return;
-#endif //SDSUPPORT
- Serial.println("ok");
-}
-
-inline void get_coordinates()
-{
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
- else destination[i] = current_position[i]; //Are these else lines really needed?
- }
- if(code_seen('F')) {
- next_feedrate = code_value();
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
-}
-
-void prepare_move()
-{
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
- for(int i=0; i < NUM_AXIS; i++) {
- current_position[i] = destination[i];
- }
-}
-
-
-
-#ifdef USE_WATCHDOG
-
-#include
-#include
-
-volatile uint8_t timeout_seconds=0;
-
-void(* ctrlaltdelete) (void) = 0;
-
-ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
- if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
- {
- kill();
-#ifdef RESET_MANUAL
- LCD_MESSAGE("Please Reset!");
- ECHOLN("echo_: Something is wrong, please turn off the printer.");
-#else
- LCD_MESSAGE("Timeout, resetting!");
-#endif
- //disable watchdog, it will survife reboot.
- WDTCSR |= (1< -1
- target_raw[0]=0;
- #if HEATER_0_PIN > -1
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #endif
- #if TEMP_1_PIN > -1
- target_raw[1]=0;
- #if HEATER_1_PIN > -1
- WRITE(HEATER_1_PIN,LOW);
- #endif
- #endif
- #if TEMP_2_PIN > -1
- target_raw[2]=0;
- #if HEATER_2_PIN > -1
- WRITE(HEATER_2_PIN,LOW);
- #endif
- #endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
- Serial.println("!! Printer halted. kill() called!!");
- while(1); // Wait for reset
-}
-
-void manage_inactivity(byte debug) {
- if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
- if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- check_axes_activity();
-}
diff --git a/Marlin/motion_control.cpp b/Marlin/motion_control.cpp
new file mode 100644
index 0000000000..875531fb78
--- /dev/null
+++ b/Marlin/motion_control.cpp
@@ -0,0 +1,133 @@
+/*
+ motion_control.c - high level interface for issuing motion commands
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+ Copyright (c) 2011 Sungeun K. Jeon
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see .
+*/
+
+//#include "motion_control.h"
+#include "Configuration.h"
+#include "Marlin.h"
+//#include
+//#include
+//#include
+#include "stepper.h"
+#include "planner.h"
+
+// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
+// segment is configured in settings.mm_per_arc_segment.
+void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
+ uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
+{
+// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
+// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
+ Serial.println("mc_arc");
+ float center_axis0 = position[axis_0] + offset[axis_0];
+ float center_axis1 = position[axis_1] + offset[axis_1];
+ float linear_travel = target[axis_linear] - position[axis_linear];
+ float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
+ float r_axis1 = -offset[axis_1];
+ float rt_axis0 = target[axis_0] - center_axis0;
+ float rt_axis1 = target[axis_1] - center_axis1;
+
+ // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+ float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
+ if (angular_travel < 0) { angular_travel += 2*M_PI; }
+ if (isclockwise) { angular_travel -= 2*M_PI; }
+
+ float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
+ if (millimeters_of_travel == 0.0) { return; }
+ uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
+/*
+ // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
+ // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
+ // all segments.
+ if (invert_feed_rate) { feed_rate *= segments; }
+*/
+ float theta_per_segment = angular_travel/segments;
+ float linear_per_segment = linear_travel/segments;
+
+ /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ r_T = [cos(phi) -sin(phi);
+ sin(phi) cos(phi] * r ;
+
+ For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ defined from the circle center to the initial position. Each line segment is formed by successive
+ vector rotations. This requires only two cos() and sin() computations to form the rotation
+ matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ all double numbers are single precision on the Arduino. (True double precision will not have
+ round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ tool precision in some cases. Therefore, arc path correction is implemented.
+
+ Small angle approximation may be used to reduce computation overhead further. This approximation
+ holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
+ theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
+ to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
+ numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
+ issue for CNC machines with the single precision Arduino calculations.
+
+ This approximation also allows mc_arc to immediately insert a line segment into the planner
+ without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+ a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
+ This is important when there are successive arc motions.
+ */
+ // Vector rotation matrix values
+ float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
+ float sin_T = theta_per_segment;
+
+ float arc_target[3];
+ float sin_Ti;
+ float cos_Ti;
+ float r_axisi;
+ uint16_t i;
+ int8_t count = 0;
+
+ // Initialize the linear axis
+ arc_target[axis_linear] = position[axis_linear];
+
+ for (i = 1; i.
+*/
+
+#ifndef motion_control_h
+#define motion_control_h
+
+// Execute an arc in offset mode format. position == current xyz, target == target xyz,
+// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
+// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
+// for vector transformation direction.
+void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
+ unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise);
+
+#endif