Comment/cleanup of motion code
This commit is contained in:
		
							parent
							
								
									046a1ad331
								
							
						
					
					
						commit
						000b3b3117
					
				| @ -366,6 +366,7 @@ float bilinear_z_offset(const float raw[XYZ]) { | |||||||
|    * splitting the move where it crosses grid borders. |    * splitting the move where it crosses grid borders. | ||||||
|    */ |    */ | ||||||
|   void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits, uint16_t y_splits) { |   void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits, uint16_t y_splits) { | ||||||
|  |     // Get current and destination cells for this line
 | ||||||
|     int cx1 = CELL_INDEX(X, current_position[X_AXIS]), |     int cx1 = CELL_INDEX(X, current_position[X_AXIS]), | ||||||
|         cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), |         cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), | ||||||
|         cx2 = CELL_INDEX(X, destination[X_AXIS]), |         cx2 = CELL_INDEX(X, destination[X_AXIS]), | ||||||
| @ -375,8 +376,8 @@ float bilinear_z_offset(const float raw[XYZ]) { | |||||||
|     cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); |     cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); | ||||||
|     cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); |     cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); | ||||||
| 
 | 
 | ||||||
|  |     // Start and end in the same cell? No split needed.
 | ||||||
|     if (cx1 == cx2 && cy1 == cy2) { |     if (cx1 == cx2 && cy1 == cy2) { | ||||||
|       // Start and end on same mesh square
 |  | ||||||
|       buffer_line_to_destination(fr_mm_s); |       buffer_line_to_destination(fr_mm_s); | ||||||
|       set_current_from_destination(); |       set_current_from_destination(); | ||||||
|       return; |       return; | ||||||
| @ -385,25 +386,30 @@ float bilinear_z_offset(const float raw[XYZ]) { | |||||||
|     #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) |     #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) | ||||||
| 
 | 
 | ||||||
|     float normalized_dist, end[XYZE]; |     float normalized_dist, end[XYZE]; | ||||||
| 
 |  | ||||||
|     // Split at the left/front border of the right/top square
 |  | ||||||
|     const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |     const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); | ||||||
|  | 
 | ||||||
|  |     // Crosses on the X and not already split on this X?
 | ||||||
|  |     // The x_splits flags are insurance against rounding errors.
 | ||||||
|     if (cx2 != cx1 && TEST(x_splits, gcx)) { |     if (cx2 != cx1 && TEST(x_splits, gcx)) { | ||||||
|  |       // Split on the X grid line
 | ||||||
|  |       CBI(x_splits, gcx); | ||||||
|       COPY(end, destination); |       COPY(end, destination); | ||||||
|       destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx; |       destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx; | ||||||
|       normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |       normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); | ||||||
|       destination[Y_AXIS] = LINE_SEGMENT_END(Y); |       destination[Y_AXIS] = LINE_SEGMENT_END(Y); | ||||||
|       CBI(x_splits, gcx); |  | ||||||
|     } |     } | ||||||
|  |     // Crosses on the Y and not already split on this Y?
 | ||||||
|     else if (cy2 != cy1 && TEST(y_splits, gcy)) { |     else if (cy2 != cy1 && TEST(y_splits, gcy)) { | ||||||
|  |       // Split on the Y grid line
 | ||||||
|  |       CBI(y_splits, gcy); | ||||||
|       COPY(end, destination); |       COPY(end, destination); | ||||||
|       destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy; |       destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy; | ||||||
|       normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |       normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); | ||||||
|       destination[X_AXIS] = LINE_SEGMENT_END(X); |       destination[X_AXIS] = LINE_SEGMENT_END(X); | ||||||
|       CBI(y_splits, gcy); |  | ||||||
|     } |     } | ||||||
|     else { |     else { | ||||||
|       // Already split on a border
 |       // Must already have been split on these border(s)
 | ||||||
|  |       // This should be a rare case.
 | ||||||
|       buffer_line_to_destination(fr_mm_s); |       buffer_line_to_destination(fr_mm_s); | ||||||
|       set_current_from_destination(); |       set_current_from_destination(); | ||||||
|       return; |       return; | ||||||
|  | |||||||
| @ -59,6 +59,7 @@ | |||||||
|      * splitting the move where it crosses mesh borders. |      * splitting the move where it crosses mesh borders. | ||||||
|      */ |      */ | ||||||
|     void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits, uint8_t y_splits) { |     void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits, uint8_t y_splits) { | ||||||
|  |       // Get current and destination cells for this line
 | ||||||
|       int cx1 = mbl.cell_index_x(current_position[X_AXIS]), |       int cx1 = mbl.cell_index_x(current_position[X_AXIS]), | ||||||
|           cy1 = mbl.cell_index_y(current_position[Y_AXIS]), |           cy1 = mbl.cell_index_y(current_position[Y_AXIS]), | ||||||
|           cx2 = mbl.cell_index_x(destination[X_AXIS]), |           cx2 = mbl.cell_index_x(destination[X_AXIS]), | ||||||
| @ -68,8 +69,8 @@ | |||||||
|       NOMORE(cx2, GRID_MAX_POINTS_X - 2); |       NOMORE(cx2, GRID_MAX_POINTS_X - 2); | ||||||
|       NOMORE(cy2, GRID_MAX_POINTS_Y - 2); |       NOMORE(cy2, GRID_MAX_POINTS_Y - 2); | ||||||
| 
 | 
 | ||||||
|  |       // Start and end in the same cell? No split needed.
 | ||||||
|       if (cx1 == cx2 && cy1 == cy2) { |       if (cx1 == cx2 && cy1 == cy2) { | ||||||
|         // Start and end on same mesh square
 |  | ||||||
|         buffer_line_to_destination(fr_mm_s); |         buffer_line_to_destination(fr_mm_s); | ||||||
|         set_current_from_destination(); |         set_current_from_destination(); | ||||||
|         return; |         return; | ||||||
| @ -78,25 +79,30 @@ | |||||||
|       #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) |       #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) | ||||||
| 
 | 
 | ||||||
|       float normalized_dist, end[XYZE]; |       float normalized_dist, end[XYZE]; | ||||||
| 
 |  | ||||||
|       // Split at the left/front border of the right/top square
 |  | ||||||
|       const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |       const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); | ||||||
|  | 
 | ||||||
|  |       // Crosses on the X and not already split on this X?
 | ||||||
|  |       // The x_splits flags are insurance against rounding errors.
 | ||||||
|       if (cx2 != cx1 && TEST(x_splits, gcx)) { |       if (cx2 != cx1 && TEST(x_splits, gcx)) { | ||||||
|  |         // Split on the X grid line
 | ||||||
|  |         CBI(x_splits, gcx); | ||||||
|         COPY(end, destination); |         COPY(end, destination); | ||||||
|         destination[X_AXIS] = mbl.index_to_xpos[gcx]; |         destination[X_AXIS] = mbl.index_to_xpos[gcx]; | ||||||
|         normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |         normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); | ||||||
|         destination[Y_AXIS] = MBL_SEGMENT_END(Y); |         destination[Y_AXIS] = MBL_SEGMENT_END(Y); | ||||||
|         CBI(x_splits, gcx); |  | ||||||
|       } |       } | ||||||
|  |       // Crosses on the Y and not already split on this Y?
 | ||||||
|       else if (cy2 != cy1 && TEST(y_splits, gcy)) { |       else if (cy2 != cy1 && TEST(y_splits, gcy)) { | ||||||
|  |         // Split on the Y grid line
 | ||||||
|  |         CBI(y_splits, gcy); | ||||||
|         COPY(end, destination); |         COPY(end, destination); | ||||||
|         destination[Y_AXIS] = mbl.index_to_ypos[gcy]; |         destination[Y_AXIS] = mbl.index_to_ypos[gcy]; | ||||||
|         normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |         normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); | ||||||
|         destination[X_AXIS] = MBL_SEGMENT_END(X); |         destination[X_AXIS] = MBL_SEGMENT_END(X); | ||||||
|         CBI(y_splits, gcy); |  | ||||||
|       } |       } | ||||||
|       else { |       else { | ||||||
|         // Already split on a border
 |         // Must already have been split on these border(s)
 | ||||||
|  |         // This should be a rare case.
 | ||||||
|         buffer_line_to_destination(fr_mm_s); |         buffer_line_to_destination(fr_mm_s); | ||||||
|         set_current_from_destination(); |         set_current_from_destination(); | ||||||
|         return; |         return; | ||||||
|  | |||||||
| @ -475,29 +475,16 @@ | |||||||
|     // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
 |     // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
 | ||||||
|     // so we call _buffer_line directly here.  Per-segmented leveling and kinematics performed first.
 |     // so we call _buffer_line directly here.  Per-segmented leveling and kinematics performed first.
 | ||||||
| 
 | 
 | ||||||
|     inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) { |     inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) { | ||||||
| 
 | 
 | ||||||
|       #if ENABLED(DELTA)  // apply delta inverse_kinematics
 |       #if ENABLED(DELTA)  // apply delta inverse_kinematics
 | ||||||
| 
 | 
 | ||||||
|         const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS] |         DELTA_RAW_IK(); | ||||||
|                                          - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx, |         planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder); | ||||||
|                                                    delta_tower[A_AXIS][Y_AXIS] - ry )); |  | ||||||
| 
 |  | ||||||
|         const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS] |  | ||||||
|                                          - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx, |  | ||||||
|                                                    delta_tower[B_AXIS][Y_AXIS] - ry )); |  | ||||||
| 
 |  | ||||||
|         const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS] |  | ||||||
|                                          - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx, |  | ||||||
|                                                    delta_tower[C_AXIS][Y_AXIS] - ry )); |  | ||||||
| 
 |  | ||||||
|         planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder); |  | ||||||
| 
 | 
 | ||||||
|       #elif IS_SCARA  // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
 |       #elif IS_SCARA  // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
 | ||||||
| 
 | 
 | ||||||
|         const float lseg[XYZ] = { rx, ry, rz }; |         inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
 | ||||||
| 
 |  | ||||||
|         inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
 |  | ||||||
|                                  // should move the feedrate scaling to scara inverse_kinematics
 |                                  // should move the feedrate scaling to scara inverse_kinematics
 | ||||||
| 
 | 
 | ||||||
|         const float adiff = FABS(delta[A_AXIS] - scara_oldA), |         const float adiff = FABS(delta[A_AXIS] - scara_oldA), | ||||||
| @ -506,11 +493,11 @@ | |||||||
|         scara_oldB = delta[B_AXIS]; |         scara_oldB = delta[B_AXIS]; | ||||||
|         float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |         float s_feedrate = max(adiff, bdiff) * scara_feed_factor; | ||||||
| 
 | 
 | ||||||
|         planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder); |         planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder); | ||||||
| 
 | 
 | ||||||
|       #else // CARTESIAN
 |       #else // CARTESIAN
 | ||||||
| 
 | 
 | ||||||
|         planner._buffer_line(rx, ry, rz, e, fr, active_extruder); |         planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder); | ||||||
| 
 | 
 | ||||||
|       #endif |       #endif | ||||||
| 
 | 
 | ||||||
| @ -528,12 +515,14 @@ | |||||||
|       if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS]))  // fail if moving outside reachable boundary
 |       if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS]))  // fail if moving outside reachable boundary
 | ||||||
|         return true; // did not move, so current_position still accurate
 |         return true; // did not move, so current_position still accurate
 | ||||||
| 
 | 
 | ||||||
|       const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS], |       const float total[XYZE] = { | ||||||
|                   tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS], |         rtarget[X_AXIS] - current_position[X_AXIS], | ||||||
|                   tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS], |         rtarget[Y_AXIS] - current_position[Y_AXIS], | ||||||
|                   tot_de = rtarget[E_AXIS] - current_position[E_AXIS]; |         rtarget[Z_AXIS] - current_position[Z_AXIS], | ||||||
|  |         rtarget[E_AXIS] - current_position[E_AXIS] | ||||||
|  |       }; | ||||||
| 
 | 
 | ||||||
|       const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy);  // total horizontal xy distance
 |       const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]);  // total horizontal xy distance
 | ||||||
| 
 | 
 | ||||||
|       #if IS_KINEMATIC |       #if IS_KINEMATIC | ||||||
|         const float seconds = cartesian_xy_mm / feedrate;                                  // seconds to move xy distance at requested rate
 |         const float seconds = cartesian_xy_mm / feedrate;                                  // seconds to move xy distance at requested rate
 | ||||||
| @ -553,41 +542,30 @@ | |||||||
|         scara_oldB = stepper.get_axis_position_degrees(B_AXIS); |         scara_oldB = stepper.get_axis_position_degrees(B_AXIS); | ||||||
|       #endif |       #endif | ||||||
| 
 | 
 | ||||||
|       const float seg_dx = tot_dx * inv_segments, |       const float diff[XYZE] = { | ||||||
|                   seg_dy = tot_dy * inv_segments, |         total[X_AXIS] * inv_segments, | ||||||
|                   seg_dz = tot_dz * inv_segments, |         total[Y_AXIS] * inv_segments, | ||||||
|                   seg_de = tot_de * inv_segments; |         total[Z_AXIS] * inv_segments, | ||||||
|  |         total[E_AXIS] * inv_segments | ||||||
|  |       }; | ||||||
| 
 | 
 | ||||||
|       // Note that E segment distance could vary slightly as z mesh height
 |       // Note that E segment distance could vary slightly as z mesh height
 | ||||||
|       // changes for each segment, but small enough to ignore.
 |       // changes for each segment, but small enough to ignore.
 | ||||||
| 
 | 
 | ||||||
|       float seg_rx = current_position[X_AXIS], |       float raw[XYZE] = { | ||||||
|             seg_ry = current_position[Y_AXIS], |         current_position[X_AXIS], | ||||||
|             seg_rz = current_position[Z_AXIS], |         current_position[Y_AXIS], | ||||||
|             seg_le = current_position[E_AXIS]; |         current_position[Z_AXIS], | ||||||
|  |         current_position[E_AXIS] | ||||||
|  |       }; | ||||||
| 
 | 
 | ||||||
|       // Only compute leveling per segment if ubl active and target below z_fade_height.
 |       // Only compute leveling per segment if ubl active and target below z_fade_height.
 | ||||||
| 
 |  | ||||||
|       if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) {   // no mesh leveling
 |       if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) {   // no mesh leveling
 | ||||||
| 
 |         while (--segments) { | ||||||
|         do { |           LOOP_XYZE(i) raw[i] += diff[i]; | ||||||
| 
 |           ubl_buffer_segment_raw(raw, feedrate); | ||||||
|           if (--segments) {     // not the last segment
 |  | ||||||
|             seg_rx += seg_dx; |  | ||||||
|             seg_ry += seg_dy; |  | ||||||
|             seg_rz += seg_dz; |  | ||||||
|             seg_le += seg_de; |  | ||||||
|           } else {              // last segment, use exact destination
 |  | ||||||
|             seg_rx = rtarget[X_AXIS]; |  | ||||||
|             seg_ry = rtarget[Y_AXIS]; |  | ||||||
|             seg_rz = rtarget[Z_AXIS]; |  | ||||||
|             seg_le = rtarget[E_AXIS]; |  | ||||||
|         } |         } | ||||||
| 
 |         ubl_buffer_segment_raw(rtarget, feedrate); | ||||||
|           ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate); |  | ||||||
| 
 |  | ||||||
|         } while (segments); |  | ||||||
| 
 |  | ||||||
|         return false; // moved but did not set_current_from_destination();
 |         return false; // moved but did not set_current_from_destination();
 | ||||||
|       } |       } | ||||||
| 
 | 
 | ||||||
| @ -598,10 +576,7 @@ | |||||||
|       #endif |       #endif | ||||||
| 
 | 
 | ||||||
|       // increment to first segment destination
 |       // increment to first segment destination
 | ||||||
|       seg_rx += seg_dx; |       LOOP_XYZE(i) raw[i] += diff[i]; | ||||||
|       seg_ry += seg_dy; |  | ||||||
|       seg_rz += seg_dz; |  | ||||||
|       seg_le += seg_de; |  | ||||||
| 
 | 
 | ||||||
|       for(;;) {  // for each mesh cell encountered during the move
 |       for(;;) {  // for each mesh cell encountered during the move
 | ||||||
| 
 | 
 | ||||||
| @ -612,8 +587,8 @@ | |||||||
|         // in top of loop and again re-find same adjacent cell and use it, just less efficient
 |         // in top of loop and again re-find same adjacent cell and use it, just less efficient
 | ||||||
|         // for mesh inset area.
 |         // for mesh inset area.
 | ||||||
| 
 | 
 | ||||||
|         int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), |         int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), | ||||||
|                cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); |                cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); | ||||||
| 
 | 
 | ||||||
|         cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); |         cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); | ||||||
|         cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); |         cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); | ||||||
| @ -631,8 +606,8 @@ | |||||||
|         if (isnan(z_x0y1)) z_x0y1 = 0;              //   in order to avoid isnan tests per cell,
 |         if (isnan(z_x0y1)) z_x0y1 = 0;              //   in order to avoid isnan tests per cell,
 | ||||||
|         if (isnan(z_x1y1)) z_x1y1 = 0;              //   thus guessing zero for undefined points
 |         if (isnan(z_x1y1)) z_x1y1 = 0;              //   thus guessing zero for undefined points
 | ||||||
| 
 | 
 | ||||||
|         float cx = seg_rx - x0,   // cell-relative x and y
 |         float cx = raw[X_AXIS] - x0,   // cell-relative x and y
 | ||||||
|               cy = seg_ry - y0; |               cy = raw[Y_AXIS] - y0; | ||||||
| 
 | 
 | ||||||
|         const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)),   // z slope per x along y0 (lower left to lower right)
 |         const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)),   // z slope per x along y0 (lower left to lower right)
 | ||||||
|                     z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST));   // z slope per x along y1 (upper left to upper right)
 |                     z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST));   // z slope per x along y1 (upper left to upper right)
 | ||||||
| @ -650,40 +625,34 @@ | |||||||
|         // and the z_cxym slope will change, both as a function of cx within the cell, and
 |         // and the z_cxym slope will change, both as a function of cx within the cell, and
 | ||||||
|         // each change by a constant for fixed segment lengths.
 |         // each change by a constant for fixed segment lengths.
 | ||||||
| 
 | 
 | ||||||
|         const float z_sxy0 = z_xmy0 * seg_dx,                                     // per-segment adjustment to z_cxy0
 |         const float z_sxy0 = z_xmy0 * diff[X_AXIS],                                     // per-segment adjustment to z_cxy0
 | ||||||
|                     z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx;  // per-segment adjustment to z_cxym
 |                     z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS];  // per-segment adjustment to z_cxym
 | ||||||
| 
 | 
 | ||||||
|         for(;;) {  // for all segments within this mesh cell
 |         for(;;) {  // for all segments within this mesh cell
 | ||||||
| 
 | 
 | ||||||
|           float z_cxcy = z_cxy0 + z_cxym * cy;      // interpolated mesh z height along cx at cy
 |           if (--segments == 0)                      // if this is last segment, use rtarget for exact
 | ||||||
|  |             COPY(raw, rtarget); | ||||||
| 
 | 
 | ||||||
|  |           float z_cxcy = z_cxy0 + z_cxym * cy;      // interpolated mesh z height along cx at cy
 | ||||||
|           #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |           #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) | ||||||
|             z_cxcy *= fade_scaling_factor;          // apply fade factor to interpolated mesh height
 |             z_cxcy *= fade_scaling_factor;          // apply fade factor to interpolated mesh height
 | ||||||
|           #endif |           #endif | ||||||
| 
 | 
 | ||||||
|           if (--segments == 0) {                    // if this is last segment, use rtarget for exact
 |           const float z = raw[Z_AXIS]; | ||||||
|             seg_rx = rtarget[X_AXIS]; |           raw[Z_AXIS] += z_cxcy; | ||||||
|             seg_ry = rtarget[Y_AXIS]; |           ubl_buffer_segment_raw(raw, feedrate); | ||||||
|             seg_rz = rtarget[Z_AXIS]; |           raw[Z_AXIS] = z; | ||||||
|             seg_le = rtarget[E_AXIS]; |  | ||||||
|           } |  | ||||||
| 
 |  | ||||||
|           ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate); |  | ||||||
| 
 | 
 | ||||||
|           if (segments == 0)                        // done with last segment
 |           if (segments == 0)                        // done with last segment
 | ||||||
|             return false;                           // did not set_current_from_destination()
 |             return false;                           // did not set_current_from_destination()
 | ||||||
| 
 | 
 | ||||||
|           seg_rx += seg_dx; |           LOOP_XYZE(i) raw[i] += diff[i]; | ||||||
|           seg_ry += seg_dy; |  | ||||||
|           seg_rz += seg_dz; |  | ||||||
|           seg_le += seg_de; |  | ||||||
| 
 | 
 | ||||||
|           cx += seg_dx; |           cx += diff[X_AXIS]; | ||||||
|           cy += seg_dy; |           cy += diff[Y_AXIS]; | ||||||
| 
 | 
 | ||||||
|           if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) {  // done within this cell, break to next
 |           if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST))    // done within this cell, break to next
 | ||||||
|             break; |             break; | ||||||
|           } |  | ||||||
| 
 | 
 | ||||||
|           // Next segment still within same mesh cell, adjust the per-segment
 |           // Next segment still within same mesh cell, adjust the per-segment
 | ||||||
|           // slope and intercept to compute next z height.
 |           // slope and intercept to compute next z height.
 | ||||||
|  | |||||||
| @ -587,12 +587,9 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, | |||||||
|     float raw[XYZE]; |     float raw[XYZE]; | ||||||
|     COPY(raw, current_position); |     COPY(raw, current_position); | ||||||
| 
 | 
 | ||||||
|     // Drop one segment so the last move is to the exact target.
 |  | ||||||
|     // If there's only 1 segment, loops will be skipped entirely.
 |  | ||||||
|     --segments; |  | ||||||
| 
 | 
 | ||||||
|     // Calculate and execute the segments
 |     // Calculate and execute the segments
 | ||||||
|     for (uint16_t s = segments + 1; --s;) { |     while (--segments) { | ||||||
| 
 | 
 | ||||||
|       static millis_t next_idle_ms = millis() + 200UL; |       static millis_t next_idle_ms = millis() + 200UL; | ||||||
|       thermalManager.manage_heater();  // This returns immediately if not really needed.
 |       thermalManager.manage_heater();  // This returns immediately if not really needed.
 | ||||||
| @ -691,16 +688,12 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, | |||||||
|       // SERIAL_ECHOPAIR("mm=", cartesian_mm);
 |       // SERIAL_ECHOPAIR("mm=", cartesian_mm);
 | ||||||
|       // SERIAL_ECHOLNPAIR(" segments=", segments);
 |       // SERIAL_ECHOLNPAIR(" segments=", segments);
 | ||||||
| 
 | 
 | ||||||
|       // Drop one segment so the last move is to the exact target.
 |  | ||||||
|       // If there's only 1 segment, loops will be skipped entirely.
 |  | ||||||
|       --segments; |  | ||||||
| 
 |  | ||||||
|       // Get the raw current position as starting point
 |       // Get the raw current position as starting point
 | ||||||
|       float raw[XYZE]; |       float raw[XYZE]; | ||||||
|       COPY(raw, current_position); |       COPY(raw, current_position); | ||||||
| 
 | 
 | ||||||
|       // Calculate and execute the segments
 |       // Calculate and execute the segments
 | ||||||
|       for (uint16_t s = segments + 1; --s;) { |       while (--segments) { | ||||||
|         static millis_t next_idle_ms = millis() + 200UL; |         static millis_t next_idle_ms = millis() + 200UL; | ||||||
|         thermalManager.manage_heater();  // This returns immediately if not really needed.
 |         thermalManager.manage_heater();  // This returns immediately if not really needed.
 | ||||||
|         if (ELAPSED(millis(), next_idle_ms)) { |         if (ELAPSED(millis(), next_idle_ms)) { | ||||||
|  | |||||||
| @ -505,8 +505,8 @@ class Planner { | |||||||
|     /**
 |     /**
 | ||||||
|      * Get the index of the next / previous block in the ring buffer |      * Get the index of the next / previous block in the ring buffer | ||||||
|      */ |      */ | ||||||
|     static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } |     static int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); } | ||||||
|     static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } |     static int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); } | ||||||
| 
 | 
 | ||||||
|     /**
 |     /**
 | ||||||
|      * Calculate the distance (not time) it takes to accelerate |      * Calculate the distance (not time) it takes to accelerate | ||||||
|  | |||||||
| @ -409,8 +409,7 @@ void Stepper::isr() { | |||||||
|   // If there is no current block, attempt to pop one from the buffer
 |   // If there is no current block, attempt to pop one from the buffer
 | ||||||
|   if (!current_block) { |   if (!current_block) { | ||||||
|     // Anything in the buffer?
 |     // Anything in the buffer?
 | ||||||
|     current_block = planner.get_current_block(); |     if ((current_block = planner.get_current_block())) { | ||||||
|     if (current_block) { |  | ||||||
|       trapezoid_generator_reset(); |       trapezoid_generator_reset(); | ||||||
| 
 | 
 | ||||||
|       // Initialize Bresenham counters to 1/2 the ceiling
 |       // Initialize Bresenham counters to 1/2 the ceiling
 | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user