Marlin/Marlin/Sd2Card.cpp

642 lines
20 KiB
C++
Raw Normal View History

/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "Marlin.h"
#ifdef SDSUPPORT
#include "Sd2Card.h"
//------------------------------------------------------------------------------
#ifndef SOFTWARE_SPI
// functions for hardware SPI
//------------------------------------------------------------------------------
// make sure SPCR rate is in expected bits
#if (SPR0 != 0 || SPR1 != 1)
#error unexpected SPCR bits
#endif
/**
* Initialize hardware SPI
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
*/
static void spiInit(uint8_t spiRate) {
// See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
}
//------------------------------------------------------------------------------
/** SPI receive a byte */
static uint8_t spiRec() {
SPDR = 0XFF;
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
return SPDR;
}
//------------------------------------------------------------------------------
/** SPI read data - only one call so force inline */
static inline __attribute__((always_inline))
2012-11-12 15:35:28 +01:00
void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
SPDR = 0XFF;
for (uint16_t i = 0; i < nbyte; i++) {
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
buf[i] = SPDR;
SPDR = 0XFF;
}
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
buf[nbyte] = SPDR;
}
//------------------------------------------------------------------------------
/** SPI send a byte */
static void spiSend(uint8_t b) {
SPDR = b;
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
}
//------------------------------------------------------------------------------
/** SPI send block - only one call so force inline */
static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) {
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
SPDR = buf[i];
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
SPDR = buf[i + 1];
}
2012-11-12 15:35:28 +01:00
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
}
//------------------------------------------------------------------------------
#else // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** nop to tune soft SPI timing */
#define nop asm volatile ("nop\n\t")
//------------------------------------------------------------------------------
/** Soft SPI receive byte */
static uint8_t spiRec() {
uint8_t data = 0;
// no interrupts during byte receive - about 8 us
cli();
// output pin high - like sending 0XFF
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, HIGH);
// adjust so SCK is nice
nop;
nop;
data <<= 1;
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
fastDigitalWrite(SPI_SCK_PIN, LOW);
}
// enable interrupts
sei();
return data;
}
//------------------------------------------------------------------------------
/** Soft SPI read data */
static void spiRead(uint8_t* buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) {
buf[i] = spiRec();
}
}
//------------------------------------------------------------------------------
/** Soft SPI send byte */
static void spiSend(uint8_t data) {
// no interrupts during byte send - about 8 us
cli();
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, LOW);
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
data <<= 1;
fastDigitalWrite(SPI_SCK_PIN, HIGH);
}
// hold SCK high for a few ns
nop;
nop;
nop;
nop;
fastDigitalWrite(SPI_SCK_PIN, LOW);
// enable interrupts
sei();
}
//------------------------------------------------------------------------------
/** Soft SPI send block */
void spiSendBlock(uint8_t token, const uint8_t* buf) {
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(buf[i]);
}
}
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// select card
chipSelectLow();
// wait up to 300 ms if busy
waitNotBusy(300);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC
uint8_t crc = 0XFF;
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
spiSend(crc);
// skip stuff byte for stop read
if (cmd == CMD12) spiRec();
// wait for response
2012-11-12 15:35:28 +01:00
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++) { /* Intentionally left empty */ }
return status_;
}
//------------------------------------------------------------------------------
/**
* Determine the size of an SD flash memory card.
*
* \return The number of 512 byte data blocks in the card
* or zero if an error occurs.
*/
uint32_t Sd2Card::cardSize() {
csd_t csd;
if (!readCSD(&csd)) return 0;
if (csd.v1.csd_ver == 0) {
uint8_t read_bl_len = csd.v1.read_bl_len;
uint16_t c_size = (csd.v1.c_size_high << 10)
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
| csd.v1.c_size_mult_low;
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
} else if (csd.v2.csd_ver == 1) {
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
return (c_size + 1) << 10;
} else {
error(SD_CARD_ERROR_BAD_CSD);
return 0;
}
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectHigh() {
digitalWrite(chipSelectPin_, HIGH);
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectLow() {
#ifndef SOFTWARE_SPI
spiInit(spiRate_);
#endif // SOFTWARE_SPI
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
/** Erase a range of blocks.
*
* \param[in] firstBlock The address of the first block in the range.
* \param[in] lastBlock The address of the last block in the range.
*
* \note This function requests the SD card to do a flash erase for a
* range of blocks. The data on the card after an erase operation is
* either 0 or 1, depends on the card vendor. The card must support
* single block erase.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
csd_t csd;
if (!readCSD(&csd)) goto fail;
// check for single block erase
if (!csd.v1.erase_blk_en) {
// erase size mask
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
// error card can't erase specified area
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto fail;
}
}
if (type_ != SD_CARD_TYPE_SDHC) {
firstBlock <<= 9;
lastBlock <<= 9;
}
if (cardCommand(CMD32, firstBlock)
|| cardCommand(CMD33, lastBlock)
|| cardCommand(CMD38, 0)) {
error(SD_CARD_ERROR_ERASE);
goto fail;
}
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
error(SD_CARD_ERROR_ERASE_TIMEOUT);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Determine if card supports single block erase.
*
* \return The value one, true, is returned if single block erase is supported.
* The value zero, false, is returned if single block erase is not supported.
*/
bool Sd2Card::eraseSingleBlockEnable() {
csd_t csd;
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
}
//------------------------------------------------------------------------------
/**
* Initialize an SD flash memory card.
*
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. The reason for failure
* can be determined by calling errorCode() and errorData().
*/
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
errorCode_ = type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
uint32_t arg;
// set pin modes
pinMode(chipSelectPin_, OUTPUT);
chipSelectHigh();
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
#ifndef SOFTWARE_SPI
// SS must be in output mode even it is not chip select
pinMode(SS_PIN, OUTPUT);
// set SS high - may be chip select for another SPI device
#if SET_SPI_SS_HIGH
digitalWrite(SS_PIN, HIGH);
#endif // SET_SPI_SS_HIGH
// set SCK rate for initialization commands
spiRate_ = SPI_SD_INIT_RATE;
spiInit(spiRate_);
#endif // SOFTWARE_SPI
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD0);
goto fail;
}
}
// check SD version
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
type(SD_CARD_TYPE_SD1);
} else {
// only need last byte of r7 response
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
if (status_ != 0XAA) {
error(SD_CARD_ERROR_CMD8);
goto fail;
}
type(SD_CARD_TYPE_SD2);
}
// initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_ACMD41);
goto fail;
}
}
// if SD2 read OCR register to check for SDHC card
if (type() == SD_CARD_TYPE_SD2) {
if (cardCommand(CMD58, 0)) {
error(SD_CARD_ERROR_CMD58);
goto fail;
}
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) spiRec();
}
chipSelectHigh();
#ifndef SOFTWARE_SPI
return setSckRate(sckRateID);
#else // SOFTWARE_SPI
return true;
#endif // SOFTWARE_SPI
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Read a 512 byte block from an SD card.
*
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
// use address if not SDHC card
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD17, blockNumber)) {
error(SD_CARD_ERROR_CMD17);
goto fail;
}
return readData(dst, 512);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Read one data block in a multiple block read sequence
*
* \param[in] dst Pointer to the location for the data to be read.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readData(uint8_t *dst) {
chipSelectLow();
return readData(dst, 512);
}
//------------------------------------------------------------------------------
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
// wait for start block token
uint16_t t0 = millis();
while ((status_ = spiRec()) == 0XFF) {
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto fail;
}
}
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto fail;
}
// transfer data
spiRead(dst, count);
// discard CRC
spiRec();
spiRec();
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** read CID or CSR register */
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
goto fail;
}
return readData(dst, 16);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Start a read multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
*
* \note This function is used with readData() and readStop() for optimized
* multiple block reads. SPI chipSelect must be low for the entire sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readStart(uint32_t blockNumber) {
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD18, blockNumber)) {
error(SD_CARD_ERROR_CMD18);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** End a read multiple blocks sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readStop() {
chipSelectLow();
if (cardCommand(CMD12, 0)) {
error(SD_CARD_ERROR_CMD12);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Set the SPI clock rate.
*
* \param[in] sckRateID A value in the range [0, 6].
*
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
* for \a scsRateID = 6.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned for an invalid value of \a sckRateID.
*/
bool Sd2Card::setSckRate(uint8_t sckRateID) {
if (sckRateID > 6) {
error(SD_CARD_ERROR_SCK_RATE);
return false;
}
spiRate_ = sckRateID;
return true;
}
//------------------------------------------------------------------------------
// wait for card to go not busy
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
uint16_t t0 = millis();
while (spiRec() != 0XFF) {
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD24, blockNumber)) {
error(SD_CARD_ERROR_CMD24);
goto fail;
}
if (!writeData(DATA_START_BLOCK, src)) goto fail;
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_TIMEOUT);
goto fail;
}
// response is r2 so get and check two bytes for nonzero
if (cardCommand(CMD13, 0) || spiRec()) {
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Write one data block in a multiple block write sequence
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::writeData(const uint8_t* src) {
chipSelectLow();
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
// send one block of data for write block or write multiple blocks
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
spiSendBlock(token, src);
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Start a write multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
* \param[in] eraseCount The number of blocks to be pre-erased.
*
* \note This function is used with writeData() and writeStop()
* for optimized multiple block writes.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
// send pre-erase count
if (cardAcmd(ACMD23, eraseCount)) {
error(SD_CARD_ERROR_ACMD23);
goto fail;
}
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD25, blockNumber)) {
error(SD_CARD_ERROR_CMD25);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** End a write multiple blocks sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::writeStop() {
chipSelectLow();
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_STOP_TRAN);
chipSelectHigh();
return false;
}
2012-08-22 14:49:57 +02:00
#endif